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1 Introduction

The paper is dedicated to the analysis of mixed finite element approximations of the solutions
of the system of equations modeling the flow of compressible fluids in porous media subject to
the Darcy law. This phenomenon generated a lot of interest in the research community such as
engineering, environmental and groundwater hydrology and in medicine.

Darcy’s law is commonly related to viscous fluid laminar flows in porous media and is char-
acterized by the permeability coefficient, which is obtained empirically in order to match the
linear relation between the velocity vector and the pressure gradient. Darcy’s equation has also
been obtained rigorously within the context of homogenization and other averaging/upscaling
techniques [25, 30]. From a hydrodynamic point of view, Darcy’s equation is interpreted as the
momentum equation. Darcy’s equation, the continuity equation, and the equation of state serve
as the framework to model processes in reservoirs [9, 23]. For a slightly compressible fluid, the
original PDE system reduces to a scalar linear second order parabolic equation for the density
only.

The popular numerical method for modeling flow in porous media is the mixed finite element
approximations (e.g., [10,13,21,27,28]). This method is widely used because of its inherent conser-
vation properties and because it produces accurate flux even for highly homogeneous media with
large jumps in the conductivity (permeability) tensor [12]. Since the pioneering work of Raviart
and Thomas [32], the method has become a standard way of deriving high order conservative ap-
proximations. We recommend to the reader [6] for general accounts of the mixed method. Douglas
et al. [11] proposed semidiscrete mixed finite element methods to approximate the solution of the
system (3.11a) – (3.11b) and obtained optimal order error estimates for the pressure in L2 under
reasonable assumptions. In [28], one of the authors has further analyzed the method and obtained
optimal order error estimates for the flux variable in the several norms of interest.

There exist several time-discretization methods to deal with the parabolic equations such as
the backward Euler method, the Crank–Nicolson method and the Runge–Kutta method [17]. As
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is known to all, the Crank–Nicolson scheme [8] was first proposed by Crank and Nicolson for
the heat-conduction equation in 1947, and it is unconditionally stable with second-order accu-
racy. Moreover, because of its high accuracy and unconditional stability, the scheme has been
widely used in many PDEs. So we use the Crank–Nicolson scheme and prove the optimal order
of convergence.

The paper is organized as follows. In Section 2, we introduce notation and some of relevant
results. We present a semi discrete mixed finite element approximation for the problem. Existence
and uniqueness are discussed and some known results are recalled. In Section 4, we derive error
estimates for the two relevant functions. We consider the fully discrete mixed finite element
method based on the Crank–Nicolson scheme to approximate the solution of the system (3.2). The
optimal order estimates are established in L2-norms for density and momentum under reasonable
assumptions on the regularity of solutions. In Section 5, the results of a few numerical experiments
using the lowest Raviart-Thomas mixed finite element in the two-dimensions are reported. These
results support our theoretical analysis regarding convergence rates.

2 Preliminaries and Auxiliaries

We consider a fluid in a porous medium occupying a bounded domain Ω ⊂ Rd, d ≥ 2 with
boundary ∂Ω. Let x ∈ Rd, 0 < T <∞ and t ∈ (0, T ] be the spatial and time variables respectively.
The fluid flow has velocity v(x, t) ∈ Rd, pressure p(x, t) ∈ R, density ρ(x, t) ∈ R+ = [0,∞) and
dynamic viscosity µ and permeability κ > 0.

The Darcy equation, which is considered as a momentum equation, is studied in [4, 29] and
has the form

v(x, t) = −κ
µ
∇p(x, t). (2.1)

This relationship describes the linear relationship between the velocity v of the creep flow and the
gradient of the pressure p, which is valid when the velocity v is extremely small [3] observed in
oil and water wells due to low permeability. A theoretical derivation of Darcy’s law can be found
in [16,24,34].

Multiplying both sides of the equation (2.1) to ρ, we find that

ρ(x, t)v(x, t) = −κ
µ
ρ(x, t)∇p(x, t). (2.2)

We recall that the fluid’s compressibility for isothermal conditions is

$ = − 1

V

dV

dp
=

1

ρ

dρ

dp
,

where V , here, denotes the fluid’s volume. In many cases such as (isothermal) compressible liquids,
$ is assumed to be a constant [4, 23]. In particular, it is a small positive constant for (isother-
mal) slightly compressible fluids such as crude oil and water. This condition is commonly used
in petroleum and reservoir engineering [1, 9], where the fluid dynamics in porous media have im-
portant applications. The current paper is focused on (isothermal) slightly compressible fluids,
hence, we study the following equation of state

1

ρ

dρ

dp
= $, where the constant compressibility $ > 0 is small. (2.3)
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Hence
∇ρ = $ρ∇p, or ρ∇p = $−1∇ρ. (2.4)

Combining (2.2) and (2.4) implies that

ρ(x, t)v(x, t) = − κ

µ$
∇ρ(x, t). (2.5)

The continuity equation is

φρt(x, t) +∇ · (ρ(x, t)v(x, t)) = f(x, t), (2.6)

where φ ∈ (0; 1) is the constant porosity, and f is the external mass flow rate.
By combining (2.5) and (2.6) we have

m(x, t) + β∇ρ(x, t) = 0,

φρt(x, t) +∇ ·m(x, t) = f(x, t),

where m(x, t) = ρ(x, t)v(x, t), β = κ
µ$ > 0.

By rescaling the variables ρ → βρ, φ → β−1φ, we can assume β = 1 to obtain the system of
equations

m(x, t) +∇ρ(x, t) = 0,

φρt(x, t) +∇ ·m(x, t) = f(x, t).
(2.7)

We recall some elementary inequalities that will be used in this paper.
For all a, b ≥ 0,

2−1(ap + bp) ≤ (a+ b)p ≤ 2|p−1|(ap + bp) for all p > 0. (2.8)

Lemma 2.1 (Young’s inequality, general version). Let N ∈ N, pi ∈ [1,∞), i=1,. . . , N, be

such that
N∑
i=1

1

pi
= 1, and let ci > 0 be such that

N∏
i=1

ci = 1. Then

N∏
i=1

ai ≤
N∑
i=1

cpii
pi
apii

for all non-negative real numbers ai, i = 1, . . . , N .

We recall a discrete version of Gronwall Lemma in backward difference form, which is useful
later. It can be proven without much difficulty by following the ideas of the proof in Gronwall
Lemma.

Lemma 2.2 Assume ` ≥ 0, 1−`τ > 0 and the nonnegative sequences {an}∞n=0, {gn}∞n=0 satisfying

an − an−1

τ
− `an ≤ gn, n = 1, 2, 3 . . .

then

an ≤ (1− `τ)−n
(
a0 + τ

n∑
i=1

(1− `τ)i−1gi

)
. (2.9)
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Proof. Let ān = (1− `τ)nan. A simple calculation shows that

ān − ān−1

τ
= (1− `τ)n−1

(an − an−1

τ
− `an

)
≤ (1− `τ)n−1gn.

Summation over n leads to

ān − ā0

τ
≤

n∑
i=1

(1− `τ)i−1gi,

and hence (2.9) holds true. �
Notations. Throughout this paper, we assume that Ω is an open, bounded subset of Rd, with

d = 2, 3, . . ., and has C1-boundary ∂Ω. For s ∈ [1,∞), we denote Ls(Ω) be the set of s-integrable
functions on Ω and (Ls(Ω))d the space of d-dimensional vectors which have all components in
Ls(Ω). We denote (·, ·) the inner product in either Ls(Ω) or (Ls(Ω))d that is (ξ, η) =

∫
Ω ξηdx or

(ξ,η) =
∫

Ω ξ ·ηdx and ‖u‖Ls(Ω) =
(∫

Ω |u(x)|sdx
)1/s

for standard Lebesgue norm of the measurable

function. The notation 〈·, ·〉 will be used for the L2(∂Ω) inner-product. For m ≥ 0, s ∈ [1,∞], we
denote the Sobolev spaces by Wm,s(Ω) = {v ∈ Ls(Ω), : Dαv ∈ Ls(Ω), |α| ≤ m} and the norm of

Wm,s(Ω) by ‖v‖Wm,s(Ω) =
(∑

|α|≤m
∫

Ω |D
αu|sdx

)1/s
, and ‖v‖Wm,∞(Ω) =

∑
|α|≤m ess supΩ |Dαu|.

Finally we define Ls(0, T ;X) to be the space of all measurable functions v : [0, T ] → X with

the norm ‖v‖Ls(0,T ;X) =
(∫ T ‖v(t)‖sX dt

)1/s
, and L∞(0, T ;X) to be the space of all measurable

functions v : [0, T ]→ X such that v : t→ ‖v(t)‖X is essentially bounded on [0, T ] with the norm
‖v‖L∞(0,T ;X) = ess supt∈[0,T ] ‖v(t)‖X .

Throughout this paper, we use short hand notations, ‖·‖k = ‖·‖k,2 and ‖·‖ = ‖·‖0,2 and

‖·‖r,p = ‖·‖W r,p ‖ρ(t)‖ = ‖ρ(·, t)‖L2(Ω) , ∀t ≥ 0 and ρ0(·) = ρ(·, 0).
Throughout this paper, we use C,C1, C2, . . . to denote a generic positive constant whose value

may change from place to place but are independent of the parameters of the discretization.

3 The Mixed Finite Element Method

We study the initial– boundary value problem or IBVP

m(x, t) +∇ρ(x, t) = 0 (x, t) ∈ Ω× (0, T ), (3.1a)

φρt(x, t) +∇ ·m(x, t) = f(x, t) (x, t) ∈ Ω× (0, T ). (3.1b)

The initial and boundary conditions:

ρ(x, 0) = ρ0(x) in Ω, ρ(x, t) = ψ(x, t) on ∂Ω× (0, T ),

we also require at t = 0: ρ0(x) = ψ(x, 0) on boundary ∂Ω. The mixed formulation of (3.1a)–(3.1b)
reads as follows. Find (m, ρ) : [0, T ]→ H(div,Ω)× L2(Ω) ≡M×R such that

(m,v)− (ρ,∇ · v) = −〈ψ,v · ν〉 ∀v ∈M, (3.2a)

φ (ρt, q) + (∇ ·m, q) = (f, q) ∀q ∈ R, (3.2b)

where 〈·, ·〉 is the inner product in L2(∂Ω) and ν denotes the unit outer normal vector to ∂Ω.
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Let {Th}h be a quasi-regular polygonalization of Ω (by triangles, rectangles, tetrahedron or
possibly hexahedron), with maxτ∈Th diam τ ≤ h. The discrete subspace Mh × Rh ⊂ M×R is
defined as

Mh = {v ∈ H(div,Ω)|v = a + bx for all T ∈ Th},
Rh = {q ∈ L2(Ω)|q is constant on each element T ∈ Th}.

So Mh denotes the RT0 space (the Raviart-Thomas-Nedelec [7, 32]) and Rh is the space of
piecewise constant functions.

For momentum, let Π :M→Mh be the Raviart-Thomas projection [31], which satisfies

(∇ · (Πm−m), q) = 0, for all m ∈M, q ∈ Rh. (3.3)

For density, we use the standard L2-projection operator, see in [7], π : R → Rh, satisfying

(πρ− ρ, q) = 0, for all ρ ∈ R, q ∈ Rh,
(πρ− ρ,∇ ·mh) = 0, for all mh ∈Mh, ρ ∈ R.

(3.4)

This projection has well-known approximation properties, e.g. [5, 6, 18].

‖Πm‖ ≤ C
(
‖m‖+ h ‖∇ ·m‖

)
, ∀m ∈M∩ (W 1,2(Ω))d. (3.5)

‖Πm−m‖ ≤ Ch ‖m‖1 , ∀m ∈M∩ (W 1,2(Ω))d. (3.6)

‖πρ‖ ≤ C ‖ρ‖ , ∀ρ ∈ L2(Ω). (3.7)

‖πρ− ρ‖+ h ‖πρ− ρ‖1 ≤ Ch
2 ‖ρ‖2 , ∀ρ ∈W 2,2(Ω). (3.8)

The two projections π and Π preserve the commuting property div ◦Π = π ◦ div : V → Rh.
We shall also find useful the following inequalities valid for each T ∈ Th

‖∇ ·m‖L2(T ) ≤ Ch
−1 ‖m‖L2(T ) , m ∈Mh. (3.9)

‖m · ν‖L2(∂T ) ≤ Ch
− 1

2 ‖m‖L2(T ) , m ∈Mh. (3.10)

The mixed finite element problem is stated as: Find a pair (mh, ρh) : [0, T ]→Mh ×Rh such
that

(mh,v)− (ρh,∇ · v) = −〈ψ,v · ν〉 ∀v ∈Mh, (3.11a)

φ (ρht, q) + (∇ ·mh, q) = (f, q) ∀q ∈ Rh. (3.11b)

Initially we take ρ0
h = πρ0. With this choice, we obtain for all q ∈ Rh(

ρ0
h, q
)

= (πρ0(x), q) .

We assume that f ∈ L2(0, T ;L2(Ω)), ψ ∈ L2(0, T ;L2(∂Ω)) and ρ0 ∈ L2(Ω). Then, see for
instance [15, 19, 20, 33], pages 156–158, for more details, there exists a unique weak solution for
(3.2a)–(3.2b) in the following sense: there exists a function ρ ∈ L2(0, T ;H1

0 (Ω)) ∩C(0, T ;L2(Ω)).
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4 Fully Discrete Problem Based on the Crank–Nicolson Scheme

The discretization scheme we want to consider is implicit and it is based on the use of the Crank–
Nicolson method as discretization in time and on the use of the finite element mesh described
above.

We first divide the interval [0, T ] into N equally-spaced subintervals by the following points

0 = t0 < t1 < . . . < tN+1 = T

with ti = iτ , ti− 1
2

= (i− 1
2)τ , for time step τ = T/N . For a smooth function ϕ on [0, T ], we define

ϕi = ϕ(·, ti) and ϕi−
1
2 = ϕ(·, ti− 1

2
). We shall denote by ϕ̄i the following arithmetic mean value,

when {ϕi}N+1
i=0 is a discrete function, between the two time levels i− 1 and i:

ϕ̄i =
ϕi + ϕi−1

2
.

We also define

δϕi =
ϕi − ϕi−1

τ
, and δ2ϕi+1 = δ(δϕi+1) =

ϕi+1 − 2ϕi + ϕi−1

τ2
∀i = 1, 2, . . . , N + 1.

The fully discrete time mixed finite element approximation to (3.2) is defined as follows: Given{
f i
}N+1

i=1
∈ L2(Ω),

{
ψi
}N+1

i=1
∈ L2(∂Ω). Find a pair (mi

h, ρ
i
h) inMh×Rh, i = 1, 2, . . . , N + 1 such

that (
m̄i
h,v
)
−
(
ρ̄ih,∇ · v

)
= −

〈
ψ̄i,v · ν

〉
, ∀v ∈Mh, (4.1a)

φ
(
δρih, q

)
+
(
∇ · m̄i

h, q
)

=
(
f̄ i, q

)
, ∀q ∈ Rh. (4.1b)

Initially, we take (m0
h, ρ

0
h) = (π∇ρ0, πρ0). With this choice we obtain(

m0
h,v
)
−
(
πρ0,∇ · v

)
= −

〈
ψ0,v · ν

〉
, ∀v ∈Mh, (4.2)(

ρ0
h, q
)

= (πρ0, q) , ∀q ∈ Rh. (4.3)

Remark 4.1 We can use f i−
1
2 in place of f̄ i in the second equation of (4.1). If f is a continuous

function of time then we define f i = f(·, ti). If f is less regular, then we define

f i =
1

τ

∫ ti

ti−1

f(·, t)dt, i = 1, . . . N + 1.

Lemma 4.2 (Stability) Let (mn
h, ρ

n
h) solve the fully discrete finite element approximation (4.1)

for each time step n, n = 1, . . . , N + 1. Suppose that (m, ρ) ∈ M×R, f ∈ L∞(0, T ;L2(Ω)), and
ψ ∈ L∞(0, T ;L2(∂Ω)), ρ0 ∈ L2(Ω). Then, there exists a positive constant C independent of τ such
that for τ sufficiently small

(i) For all n = 1, 2, . . . , N + 1,

‖ρnh‖
2 + τ

n∑
i=1

∥∥m̄i
h

∥∥2 ≤ C(h)
(
‖ρ0‖2 +

n∑
i=1

τ
∥∥f̄ i∥∥2

+
∥∥ψ̄i∥∥2

L2(∂Ω)

)
. (4.4)

(ii) For all n = 1, 2, . . . , N + 1,

‖mn
h‖

2 ≤ C(h)
(
‖ρ0‖2 +

∥∥ψ0
∥∥2

L2(∂Ω)
+

n∑
i=1

i∑
j=1

τ
∥∥f̄ j∥∥2

+
∥∥ψ̄j∥∥2

L2(∂Ω)

)
. (4.5)
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Proof.
(i) Let (q,v) = (ρ̄ih, m̄

i
h) in (4.1a) and (4.1b). Adding the resultant equations gives(
m̄i
h, m̄

i
h

)
+ φ

(
δρih, ρ̄

i
h

)
=
(
f̄ i, ρ̄ih

)
−
〈
ψ̄i, m̄i

h · ν
〉
.

Using Hölder’s inequality, the triangle inequality and the inverse inequality (3.10), we find
that∥∥m̄i

h

∥∥2
+

φ

2τ

(∥∥ρih∥∥2 −
∥∥ρi−1

h

∥∥2
)
≤
∥∥f̄ i∥∥∥∥ρ̄ih∥∥+

∥∥ψ̄i∥∥
L2(∂Ω)

∥∥m̄i
h

∥∥
L2(∂Ω)

≤ 1

2

∥∥f̄ i∥∥ (
∥∥ρih∥∥+

∥∥ρi−1
h

∥∥)
∥∥ρ̄ih∥∥+ Ch−

1
2

∥∥ψ̄i∥∥
L2(∂Ω)

∥∥m̄i
h

∥∥ .
It follows from the Young inequality that

∥∥m̄i
h

∥∥2
+ φ(1 + τ)

∥∥ρih∥∥2 −
∥∥ρi−1

h

∥∥2

τ
− 2φ

∥∥ρih∥∥2 ≤ 2φ−1
∥∥f̄ i∥∥2

+ Ch−1
∥∥ψ̄i∥∥2

L2(∂Ω)
.

By the discrete Gronwall inequality (2.9) for n = 1, 2, . . . , N + 1,

‖ρnh‖
2 +

τ

φ(1 + τ)

n∑
i=1

∥∥m̄i
h

∥∥2 ≤ C
(1− τ

1 + τ

)−n(∥∥ρ0
h

∥∥2
+

n∑
i=1

τ
∥∥f̄ i∥∥2

+ h−1
∥∥ψ̄i∥∥2

L2(∂Ω)

)
≤ C(h)enτ

(∥∥πρ0
∥∥2

+
n∑
i=1

τ
∥∥f̄ i∥∥2

+
∥∥ψ̄i∥∥2

L2(∂Ω)

)
≤ C(h)

(
‖ρ0‖2 +

n∑
i=1

τ
∥∥f̄ i∥∥2

+
∥∥ψ̄i∥∥2

L2(∂Ω)

)
.

We completed the proof of (4.4).
(ii) By taking v = 2(mi

h −mi−1
h ) in the Eq. (4.1a) we find that∥∥mi

h

∥∥2 −
∥∥mi−1

h

∥∥2
= 2

(
ρ̄ih,∇ · (mi

h −mi−1
h )

)
− 2

〈
ψ̄i, (mi

h −mi−1
h ) · ν

〉
.

Using Hölder’s inequality, the triangle inequality and the inverse inequality (3.9)-(3.10), we
find that∥∥mi

h

∥∥2 −
∥∥mi−1

h

∥∥2 ≤
∥∥ρih + ρi−1

h

∥∥∥∥∇ · (mi
h −mi−1

h )
∥∥+ 2

∥∥ψ̄i∥∥
L2(∂Ω)

∥∥mi
h −mi−1

h

∥∥
L2(∂Ω)

≤ Ch−1
∥∥ρih + ρi−1

h

∥∥ (∥∥mi
h

∥∥+
∥∥mi−1

h

∥∥)+ Ch−
1
2

∥∥ψ̄i∥∥
L2(∂Ω)

(∥∥mi
h

∥∥+
∥∥mi−1

h

∥∥) .
Applying Cauchy- Schwartz and (2.8) gives

3

2
(
∥∥mi

h

∥∥2 −
∥∥mi−1

h

∥∥2
)−

∥∥mi
h

∥∥2 ≤ C(h)
(∥∥ρih∥∥2

+
∥∥ρi−1

h

∥∥2
+
∥∥ψ̄i∥∥2

L2(∂Ω)

)
. (4.6)

Inserting (4.4) into (4.6) leads to

(
∥∥mi

h

∥∥2 −
∥∥mi−1

h

∥∥2
)− 2

3

∥∥mi
h

∥∥2 ≤ C(h)
(
‖ρ0‖2 +

i∑
j=1

τ
∥∥f̄ j∥∥2

+
∥∥ψ̄j∥∥2

L2(∂Ω)

)
. (4.7)
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Due to the discrete Gronwall’s inequality (2.9) with τ = 1 and ` = 2
3 , we find that

‖mn
h‖

2 ≤ C
∥∥m0

h

∥∥2
+ C(h)

n∑
i=1

(
‖ρ0‖2 +

i∑
j=1

τ
∥∥f̄ j∥∥2

+
∥∥ψ̄j∥∥2

L2(∂Ω)

)
. (4.8)

Since
(
m0
h,v
)
−
(
πρ0,∇ · v

)
= −

〈
ψ0,v · ν

〉
, let v = m0

h then∥∥m0
h

∥∥2 ≤ ‖πρ0‖
∥∥∇ ·m0

h

∥∥+
∥∥ψ0

∥∥
L2(∂Ω)

∥∥m0
h

∥∥
L2(∂Ω)

≤ C(h)(‖πρ0‖+
∥∥ψ0

∥∥
L2(∂Ω)

)
∥∥m0

h

∥∥ . (4.9)

Combining (4.8) and (4.9) yields

‖mn
h‖

2 ≤ C(h)
(
‖ρ0‖2 +

∥∥ψ0
∥∥2

L2(∂Ω)
+

n∑
i=1

i∑
j=1

τ
∥∥f̄ j∥∥2

+
∥∥ψ̄j∥∥2

L2(∂Ω)

)
.

The proof is complete. �

Lemma 4.3 Let (mn
h, ρ

n
h) solve the fully discrete finite element approximation (4.1) for each time

step n, n = 2, . . . , N + 1. Suppose that f ∈ L∞(0, T ;L2(Ω)), ψ ∈ L∞(0, T ;L2(∂Ω)), ρ0 ∈ L2(Ω).
Then, there exists a positive constant C independent of τ such that for τ sufficiently small∥∥∥∥∥ρnh − ρn−1

h

τ

∥∥∥∥∥ ≤ C(h)
(
‖ρ0‖2 +

∥∥ψ0
∥∥2

L2(∂Ω)
+
∥∥f̄1

∥∥2
+
∥∥ψ̄1

∥∥2

L2(∂Ω)
+

n∑
i=2

∥∥δf̄ i∥∥+
∥∥δψ̄i∥∥). (4.10)

Proof. Acting the discrete operator δ on (4.1a) and (4.1b) we get, for all i = 1 . . . , N + 1(
δm̄i

h,v
)
−
(
δρ̄ih,∇ · v

)
= −

〈
δψ̄i,v · ν

〉
, ∀v ∈Mh, (4.11a)

φ
(
δ2ρih, q

)
+
(
δ∇ · m̄i

h, q
)

=
(
δf̄ i, q

)
, ∀q ∈ Rh. (4.11b)

Taking v = δm̄i
h in (4.11a) and q = δρ̄ih in (4.11b), adding the resultant equations we obtain

φ

∥∥δρih∥∥2 −
∥∥δρi−1

h

∥∥2

2τ
+
∥∥δm̄i

h

∥∥2
=
(
δf̄ i, δρ̄ih

)
+
〈
δψ̄i, δm̄i

h · ν
〉
.

Thanks to the use of Hölder’s inequality, triangle inequality and inverse inequality (3.10), we
obtain that

φ

∥∥δρih∥∥2 −
∥∥δρi−1

h

∥∥2

2τ
+
∥∥δm̄i

h

∥∥2 ≤
∥∥δf̄ i∥∥∥∥δρ̄ih∥∥+

∥∥δψ̄i∥∥
L2(∂Ω)

∥∥δm̄i
h

∥∥
L2(∂Ω)

≤
∥∥δf̄ i∥∥∥∥δρ̄ih∥∥+ Ch−

1
2

∥∥δψ̄i∥∥
L2(∂Ω)

∥∥δm̄i
h

∥∥ .
It follows from Young’s inequality that

φ(1 + τ)

∥∥δρih∥∥2 −
∥∥δρi−1

h

∥∥2

τ
− 2φ

∥∥δρih∥∥2
+
∥∥δm̄i

h

∥∥2 ≤ 2φ−1
∥∥δf̄ i∥∥2

+ Ch−1
∥∥δψ̄i∥∥2

L2(∂Ω)
,
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By discrete Gronwall’s inequality (2.9)

‖δρnh‖
2 ≤ C

∥∥δρ1
h

∥∥2
+ C(h)

n∑
i=2

τ
∥∥δf̄ i∥∥2

+
∥∥δψ̄i∥∥2

L2(∂Ω)
. (4.12)

Let us estimate
∥∥δρ1

h

∥∥2
. At the step i = 1, taking q = δρ1

h in Eq.(4.1b) we find that

φ
(
δρ1
h, δρ

1
h

)
+
(
∇ · m̄1

h, δρ
1
h

)
=
(
f̄1, δρ1

h

)
.

Thus
φ
∥∥δρ1

h

∥∥2 ≤ C
( ∥∥∇ · m̄1

h

∥∥2
+
∥∥f̄1

∥∥2 ) ≤ Ch−2
∥∥m̄1

h

∥∥2
+ C

∥∥f̄1
∥∥2

≤ C(h)(
∥∥m1

h

∥∥2
+
∥∥m0

h

∥∥)2 +
∥∥f̄1

∥∥2
).

(4.13)

By (4.13) and (4.5), it implies that

φ
∥∥δρ1

h

∥∥2 ≤ C(h)
(
‖ρ0‖2 +

∥∥ψ0
∥∥2

L2(∂Ω)
+ (τ + 1)

∥∥f̄1
∥∥2

+
∥∥ψ̄1

∥∥2

L2(∂Ω)

)
. (4.14)

Substituting (4.14) into (4.12) shows (4.10) holds true.
The proof is complete. �

4.1 Error Analysis for the Fully Discrete Method

In this section we derive an error estimate for the fully discrete scheme. First, we give some results
that are crucial in getting the convergence results.

Lemma 4.4 For n ≥ 1 if ρtt, ρttt ∈ L2(0, T ;L2(Ω)), then

(i)
∥∥∥ρ̄n − ρn− 1

2

∥∥∥2
≤ Cτ3

∫ tn

tn−1

‖ρtt‖2 dt. (4.15)

(ii)

∥∥∥∥δρn − ρn− 1
2

t

∥∥∥∥2

≤ Cτ3

∫ tn

tn−1

‖ρttt‖2 dt. (4.16)

Proof. (i) By Taylor expansion with integral remainder

ρn = ρn−
1
2 +

τ

2
ρ
n− 1

2
t +

∫ tn

t
n− 1

2

ρtt(t)(tn − t)dt.

ρn−1 = ρn−
1
2 − τ

2
ρ
n− 1

2
t +

∫ tn−1

t
n− 1

2

ρtt(t)(t− tn−1)dt.

This implies that∥∥∥∥ρn + ρn−1

2
− ρn−

1
2

∥∥∥∥2

=
1

2

∫
Ω

∣∣∣ ∫ tn

t
n− 1

2

ρtt(t)(tn − t)dt+

∫ tn−1

t
n− 1

2

ρtt(t)(t− tn−1)dt
∣∣∣2dx

≤
∫

Ω

(∫ tn

t
n− 1

2

ρtt(t)(tn − t)dt
)2

+
(∫ tn−1

t
n− 1

2

ρtt(t)(t− tn−1)dt
)2
dx.

(4.17)
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We estimate the right hand side by Hölder’s inequality∫
Ω

(∫ tn

t
n− 1

2

ρtt(t)(tn − t)dt
)2

+
(∫ tn−1

t
n− 1

2

ρtt(t)(t− tn−1)dt
)2
dx

≤
∫

Ω

(∫ tn

t
n− 1

2

|ρtt|2dt
∫ tn

t
n− 1

2

(tn − t)2dt
)
dx+

∫
Ω

(∫ t
n− 1

2

tn−1

|ρtt|2dt
∫ t

n− 1
2

tn−1

(tn − t)2dt
)
dx

≤ τ3

24

(∫
Ω

∫ tn

t
n− 1

2

|ρtt|2dtdx+

∫
Ω

∫ tn− 1
2

tn−1

|ρtt|2dtdx
)
≤ τ3

12

∫ tn

tn−1

‖ρtt‖2 dt.

(4.18)

Then (4.15) follows directly from inserting (4.18) into (4.17).
(ii) Similar proof for (4.16). By Taylor expansion with integral remainder

ρn = ρn−
1
2 +

τ

2!
ρ
n− 1

2
t +

τ2

3!
ρ
n− 1

2
tt +

1

3!

∫ tn

t
n− 1

2

ρttt(t)(tn − t)2dt.

ρn−1 = ρn−
1
2 − τ

2!
ρ
n− 1

2
t +

τ2

3!
ρ
n− 1

2
tt − 1

3!

∫ tn−1

t
n− 1

2

ρttt(t)(t− tn−1)2dt.

Using (2.8) and Hölder’s inequality shows that∥∥∥∥ρn − ρn−1

τ
− ρn−

1
2

t

∥∥∥∥2

=
τ−2

36

∫
Ω

∣∣∣ ∫ tn

t
n− 1

2

ρttt(t)(tn − t)2dt+

∫ tn−1

t
n− 1

2

ρttt(t)(t− tn−1)2dt
∣∣∣2dx

≤ τ−2

36

∫
Ω

(∫ tn

t
n− 1

2

ρttt(t)(tn − t)2dt
)2

+
(∫ tn−1

t
n− 1

2

ρttt(t)(t− tn−1)2dt
)2
dx

≤ 1

36
τ−2

∫
Ω

∫ tn

t
n− 1

2

|ρttt|2dt
∫ tn

t
n− 1

2

(tn − t)4dtdx+

∫
Ω

∫ t
n− 1

2

tn−1

|ρttt|2dt
∫ t

n− 1
2

tn−1

(tn − t)4dtdx

≤ τ3

5760

(∫
Ω

∫ tn

t
n− 1

2

|ρttt|2dtdx+

∫
Ω

∫ tn− 1
2

tn−1

|ρttt|2dtdx
)
≤ τ3

2880

∫ tn

tn−1

‖ρttt‖2 dt.

Then (4.16) follows. �

Lemma 4.5 For n ≥ 2, suppose ρtt, ρttt ∈ L2(0, T ;L2(Ω)). Then there is a positive constant C
such that ∥∥∥δ(ρ̄n − ρn− 1

2 )
∥∥∥2
≤ Cτ

∫ tn

tn−2

‖ρtt‖2 dt. (4.19a)∥∥∥∥δ(δρn − ρn− 1
2

t )

∥∥∥∥2

≤ Cτ
∫ tn

tn−2

‖ρttt‖2 dt. (4.19b)

Proof. Each estimate is a result of using the Taylor theorem with integral remainder and the
Hölder inequality. �

First, we derive an error estimate.
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Subtract (3.2a) from (4.1a) to obtain(
m̄i − m̄i

h,v
)
−
(
ρ̄i − ρ̄ih,∇ · v

)
= 0. (4.20)

From (3.2b) we have
φ
(
ρ̄it, q

)
+
(
∇ · m̄i, q

)
=
(
f̄ i, q

)
. (4.21)

Subtract (4.1b) from (4.21) to obtain

φ
(
δ(ρi − ρih), q

)
+
(
∇ · (m̄i − m̄i

h), q
)

= φ

(
δρi − ρi−

1
2

t , q

)
− φ

(
ρ̄it − ρ

i− 1
2

t , q

)
. (4.22)

Then from (4.20) and (4.22) we have (
m̄i − m̄i

h,v
)
−
(
ρ̄i − ρ̄ih,∇ · v

)
= 0,∀v ∈Mh, (4.23a)

φ
(
δ(ρi − ρih), q

)
+
(
∇ · (m̄i − m̄i

h), q
)

= φ

(
δρi − ρi−

1
2

t , q

)
− φ

(
ρ̄it − ρ

i− 1
2

t , q

)
, ∀q ∈ Rh (4.23b)

Let
ρi − ρih = ρi − πρi + πρi − ρih = ζi + θi = χi.

mi −mi
h = mi −Πmi + Πmi −mi

h = ξi + ϑi = ηi.

From (3.8) and (3.6) we have

∥∥ζi∥∥ =
∥∥ρi − πρi∥∥ ≤ Ch2

∥∥ρi∥∥
2
≤ Ch2

(∥∥ρ0
∥∥

2
+

∫ ti

0
‖ρt‖2 dt

)
. (4.24)

∥∥ξi∥∥ =
∥∥mi −Πmi

∥∥ ≤ Ch∥∥mi
∥∥

1
≤ Ch

(∥∥m0
∥∥

1
+

∫ ti

0
‖mt‖1 dt

)
. (4.25)

Theorem 4.6 Let (mn, ρn) solve problem (3.2a)–(3.2b) and (mn
h, ρ

n
h) solve the fully discrete

finite element approximation (4.1a)–(4.1b) for each time step n, n = 1, . . . , N + 1. Suppose
that (m0, ρ0) ∈ (W 1,2(Ω))d,W 2,2(Ω)), (mt, ρt) ∈ (L1(0, T ;W 1,2(Ω))d, L1(0, T ;W 2,2(Ω))), and
ρtt, ρttt ∈ L2(0, T ;L2(Ω)). Then, there exists a positive constant C independent of h and τ such
that, for τ sufficiently small,

(i) ‖ρn − ρnh‖ ≤ Cτ2
(∫ tn

0
‖ρtt‖2 + ‖ρttt‖2 dt

) 1
2

+ Ch2
(∥∥ρ0

∥∥
2

+

∫ tn

0
‖ρt‖2 dt

)
. (4.26)

(ii) ‖mn −mn
h‖ ≤ Cτ2

(∫ tn

0
‖ρtt‖2 + ‖ρttt‖2 dt

) 1
2

+ Ch
(∥∥m0

∥∥
1

+

∫ tn

0
‖mt‖1 dt

)
. (4.27)

Proof.
(i) For any q ∈ Rh,v ∈ Mh, then from (4.23a) and (4.23b), recalling the projectors in (3.4)

and (3.3), we end up with (
ϑ̄i,v

)
−
(
θ̄i,∇ · v

)
= 0, ∀v ∈Mh, (4.28a)

φ
(
δθi, q

)
+
(
∇ · ϑ̄i, q

)
= φ

(
δρi − ρi−

1
2

t , q

)
− φ

(
ρ̄it − ρ

i− 1
2

t , q

)
, ∀q ∈ Rh. (4.28b)
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Now choosing (q,v) = (θ̄i, ϑ̄i) in (4.28a) and (4.28b), and adding the resulting equations we obtain

φ
(
δθi, θ̄i

)
+
∥∥ϑ̄i∥∥2

= φ

(
δρi − ρi−

1
2

t , θ̄i
)
− φ

(
ρ̄it − ρ

i− 1
2

t , θ̄i
)
.

Applying the Young inequality and (2.8) yields

φ

∥∥θi∥∥2 −
∥∥θi−1

∥∥2

2τ
+
∥∥ϑ̄i∥∥2 ≤ φ

2ε

(∥∥∥∥δρi − ρi− 1
2

t

∥∥∥∥2

+

∥∥∥∥ρ̄it − ρi− 1
2

t

∥∥∥∥2
)

+ εφ
∥∥θ̄i∥∥2

≤ φ

2ε

(∥∥∥∥δρi − ρi− 1
2

t

∥∥∥∥2

+

∥∥∥∥ρ̄it − ρi− 1
2

t

∥∥∥∥2
)

+
φε

2

(∥∥θi∥∥2
+
∥∥θi−1

∥∥2
)
,

it follows that

∥∥θi∥∥2 ≤ 1 + τε

1− τε
∥∥θi−1

∥∥2
+

τ

ε(1− τε)

(∥∥∥∥δρi − ρi− 1
2

t

∥∥∥∥2

+

∥∥∥∥ρ̄it − ρi− 1
2

t

∥∥∥∥2
)
.

Choosing ε > 0 such that 1− τε > 1/2, we find that

∥∥θi∥∥2 ≤ C

(∥∥θi−1
∥∥2

+ τ

(∥∥∥∥δρi − ρi− 1
2

t

∥∥∥∥2

+

∥∥∥∥ρ̄it − ρi− 1
2

t

∥∥∥∥2
))

.

According to Lemma 4.4, we have∥∥∥∥δρi − ρi− 1
2

t

∥∥∥∥2

+

∥∥∥∥ρ̄it − ρi− 1
2

t

∥∥∥∥2

≤ Cτ3

∫ ti

ti−1

‖ρtt‖2 + ‖ρttt‖2 dt.

We obtain ∥∥θi∥∥2 ≤ C

(∥∥θi−1
∥∥2

+ τ4

∫ ti

ti−1

‖ρtt‖2 + ‖ρttt‖2 dt

)
.

Noting that θ0 = 0 and adding all equations for i = 1, 2, . . . n ≤ N , we get

‖θn‖2 ≤ Cτ4
n∑
i=1

∫ ti

ti−1

‖ρtt‖2 + ‖ρttt‖2 dt. (4.29)

The result (4.26) follows straightforwardly using (4.29), (4.24) and the triangle inequality.
(ii) For any q ∈ Rh,v ∈Mh, from (4.20) and (4.22), using L2-project and elliptic projection,

we find that (
δϑ̄i,v

)
−
(
δθ̄i,∇ · v

)
= 0, ∀v ∈Mh, (4.30a)

φ
(
δθi, q

)
+
(
∇ · ϑ̄i, q

)
= φ

(
δρi − ρi−

1
2

t , q

)
− φ

(
ρ̄it − ρ

i− 1
2

t , q

)
, ∀q ∈ Rh. (4.30b)

From the sum of Eq. (4.30b) with q = δθ̄i and Eq. (4.30a) with v = ϑ̄i, applying Young’s
inequality, we obtain

φ
∥∥δθ̄i∥∥2

+
1

2τ

(∥∥ϑi∥∥2 −
∥∥ϑi−1

∥∥2
)
≤ φ

∥∥∥∥δρi − ρi− 1
2

t

∥∥∥∥2

+ φ

∥∥∥∥ρ̄it − ρi− 1
2

t

∥∥∥∥2

+
φ

2

∥∥δθ̄i∥∥2
.
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By Lemma 4.4, (4.15)-(4.16) we find that∥∥ϑi∥∥2 −
∥∥ϑi−1

∥∥2

τ
≤ Cτ3

∫ ti

ti−1

‖ρtt‖2 + ‖ρttt‖2 dt.

The discrete Gronwall lemma (Lemma 2.2 with ` = 0) yields

‖ϑn‖2 ≤ C
∥∥ϑ0
∥∥2

+ Cτ4
n∑
i=1

∫ ti

ti−1

‖ρtt‖2 + ‖ρttt‖2 dt, (4.31)

since (
m0 −m0

h,v
)

+
(
ρ0 − πρ0,∇ · v

)
=
(
Πm0 −m0,v

)
∀v ∈Mh.

Let v = Πm0 −m0
h, then∥∥Πm0 −m0

h

∥∥ ≤ ∥∥Πm0 −m0
∥∥ ≤ Ch1

∥∥m0
∥∥

1
. (4.32)

Inserting (4.32) into (4.31) we find that

‖ϑn‖ ≤ Ch
∥∥m0

∥∥
1

+ Cτ2
(∫ tn

0
‖ρtt‖2 + ‖ρttt‖2 dt

) 1
2
. (4.33)

Combining (4.33), (4.25) and the triangle inequality we complete the proof (4.27). �

Theorem 4.7 Let (mn, ρn) solve problem (3.2) and (mn
h, ρ

n
h) solve the fully discrete finite element

approximation (4.1) for each time step n, n = 1, . . . , N+1. Suppose that ρtt, ρttt ∈ L2(0, T ;L2(Ω)).
Then, there exists a positive constant C independent of h and τ such that, for τ sufficiently small,∥∥∥∥∥ρn − ρn−1

τ
−
ρnh − ρ

n−1
h

τ

∥∥∥∥∥ ≤ C(h+ τ
)
. (4.34)

Proof. Taking the difference in time of (4.28a) and (4.28b) we find that

(
δϑ̄i,v

)
−
(
δθ̄i,∇ · v

)
= 0, ∀v ∈Mh, (4.35a)

φ
(
δ2θi, q

)
+
(
∇ · δϑ̄i, q

)
= φ

(
δ(δρi − ρi−

1
2

t ), q

)
− φ

(
δ(ρ̄it − ρ

i− 1
2

t ), q

)
, ∀q ∈ Rh. (4.35b)

From the sum of Eq. (4.35b) with q = δθ̄i and Eq. (4.35a) with v = δϑ̄i, applying the Young
inequality, we obtain∥∥δθi∥∥2 −

∥∥δθi−1
∥∥2

τ
− 2

1 + τ

∥∥δθi∥∥2 ≤ C

(∥∥∥∥δ(δρi − ρi− 1
2

t )

∥∥∥∥2

+

∥∥∥∥δ(ρ̄it − ρi− 1
2

t )

∥∥∥∥2
)
.

Applying the discrete Gronwall’s inequality implies

‖δθn‖2 ≤
∥∥δθ1

∥∥2
+ Cτ

n∑
i=2

∥∥∥∥δ(δρi − ρi− 1
2

t )

∥∥∥∥2

+

∥∥∥∥δ(ρ̄it − ρi− 1
2

t )

∥∥∥∥2

=

∥∥∥∥θ1

τ

∥∥∥∥2

+ Cτ
n∑
i=2

∥∥∥∥δ(δρi − ρi− 1
2

t )

∥∥∥∥2

+

∥∥∥∥δ(ρ̄it − ρi− 1
2

t )

∥∥∥∥2

.

(4.36)
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Thanks to (4.29), ∥∥∥∥θ1

τ

∥∥∥∥2

≤ Cτ2

∫ t1

0
‖ρtt‖2 + ‖ρttt‖2 dt. (4.37)

Thanks to (4.19a) and (4.19b),

n∑
i=2

(∥∥∥∥δ(δρi − ρi− 1
2

t )

∥∥∥∥2

+

∥∥∥∥δ(ρ̄it − ρi− 1
2

t )

∥∥∥∥2 )
≤ Cτ

n∑
i=2

∫ ti

ti−2

‖ρtt‖2 + ‖ρttt‖2 dt. (4.38)

Combining (4.36) with (4.37) and (4.38) gives

‖δθn‖2 ≤ Cτ2

∫ t1

0
‖ρtt‖2 + ‖ρttt‖2 dt+ Cτ2

n∑
i=2

∫ ti

ti−2

‖ρtt‖2 + ‖ρttt‖2 dt

≤ Cτ2
n∑
i=2

∫ ti

ti−2

‖ρtt‖2 + ‖ρttt‖2 dt

for all n = 2, . . . , N + 1.
Then

‖δθn‖ ≤ Cτ
( n∑
i=1

∫ ti

ti−2

‖ρtt‖2 + ‖ρttt‖2 dt
) 1

2
. (4.39)

By the triangle inequality, (4.39) and (4.24),

‖δ(ρn − ρnh)‖ ≤ ‖δθn‖+ ‖δζn‖ ≤ Cτ
( n∑
i=2

∫ ti

ti−2

‖ρtt‖2 + ‖ρttt‖2 dt
) 1

2
+ Ch

∥∥ρi∥∥
1
.

This proves (4.34). �

5 Numerical Results

In this section we carry out numerical experiments using mixed finite element based on the
Crank–Nicolson scheme to solve problem (4.1a)–(4.1b) in two dimensional regions. For simplicity,
the region of examples are unit square Ω = [0, 1]2. We used FEniCS [22] to perform our numerical
simulations. We divided the unit square into an N×N mesh of squares, each then subdivided into
two right triangles using the UnitSquareMesh class in FEniCS. The triangularization in region
Ω is uniform subdivision in each dimension. Our problem is solved at each time level starting at
t = 0 until the final time T = 1. At time T = 1, we measured the L2-errors of the density and
the momentum. We obtain the convergence rates r = ln(ei/ei−1)

ln(hi/hi−1) of finite approximation at eight

levels with the discretization parameters h ∈ {1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256}(the
mesh size is actually h

√
2) respectively.

To test the convergence rates of the proposed algorithm, we choose the true solution of the
problem (3.1a)–(3.1b) by

ρ(x, t) = et x2
1(1− x1)x2(1− x2) and

m(x, t) =

[
−et x1(2− 3x1)x2(1− x2)
−et x2

1(1− x1)(1− 2x2)

]
∀(x, t) ∈ [0, 1]2 × (0, 1].
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For simplicity, we take φ = 1 on Ω. The forcing term f is determined from equation ρt+∇·m =
f . Explicitly,

f(x, t) = et x2
1(1− x1)x2(1− x2)− 2et

[
(1− 3x1)x2(1− x2)− x2

1(1− x1)
]
.

The initial condition and boundary condition are determined according to the analytical solution
as follows:

ρ0(x) = x2
1(1− x1)x2(1− x2), and ρ(x, t)

∣∣∣
∂Ω

= 0.

The numerical results are listed in Table 1 below.

N ‖ρ− ρh‖ Rates ‖m−mh‖ Rates

2 1.2462e-2 – 6.2211e-2 –
4 3.5764e-3 1.80 3.1202e-2 0.99
8 8.8489e-4 2.01 1.5252e-2 1.03
16 2.1890e-4 2.02 7.4188e-3 1.03
32 5.4645e-5 2.00 3.6974e-3 1.00
64 1.3666e-5 2.00 1.8452e-3 1.00
128 3.4149e-6 2.00 9.2200e-4 1.00
256 8.5373e-7 2.00 4.6035e-4 1.00

Table 1: Results of the Crank–Nicolson scheme for the density and momentum with τ = h/20.

For the given problem, nearly second order and first order convergence are observed respec-
tively in L2 for the density and momentum. Slightly better than second order convergence is
observed for the density, but as the mesh is refined, the error ratio approaches one in accordance
with the theory.

In the second example we consider the non-homogeneous Dirichlet boundary condition. We
test the stability of the method with different time steps. We take the true solution of the problem
(3.1a)–(3.1b) to be

ρ(x, t) = e−t sinπx1 sinx2, m(x, t) =

[
−πe−t cosπx1 sinx2

−e−t sinπx1 cosx2

]
(x, t) ∈ [0, 1]2 × (0, 1].

The forcing term f , initial condition and boundary condition accordingly are

f(x, t) = π2e−t sinπx1 sinx2, (x, t) ∈ [0, 1]2 × [0, 1],

and

ρ0(x) = sinπx1 sinx2, ρ(x, t)|∂Ω =

{
0 if (x1, x2) ∈ {0, 1} × (0, 1],

e−t sin 1 sinπx1 if (x1, x2) ∈ (0, 1)× {1}.

Table 2 presents the results for τ = h.
Tables 1-2 represent the numerical solution errors and convergence rates in the L2-norm. In

both cases, errors are calculated at time T = 1 and clearly demonstrate the second order of
convergence for the density variable and first order of convergence for the momentum variable in
the L2-norm.
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N ‖ρ− ρh‖ Rates ‖m−mh‖ Rates

2 1.6323e-2 – 4.1600e-01 –
4 4.3628e-3 1.90 2.1611e-01 0.94
8 1.0634e-3 2.04 1.1040e-01 0.97
16 2.6451e-4 2.01 5.5712e-02 0.99
32 6.5917e-5 2.00 2.7833e-02 1.00
64 1.6453e-5 2.00 1.3856e-02 1.00
128 4.1139e-6 2.00 6.9205e-03 1.00
256 1.0288e-6 2.00 3.4545e-03 1.00

Table 2: Results of the Crank–Nicolson scheme for the density and momentum with τ = h.

6 Conclusion

In this paper, we have established a new fully discrete mixed finite element method based on
the Crank–Nicolson scheme for Darcy flows. The spatial discretization is mixed and based on
the lowest-order Raviart–Thomas finite elements, whereas the time discretization is based on the
Crank–Nicolson scheme. We have proven the convergence of the scheme by estimating the error in
term of discretization parameters. It has been shown that our method has the optimal convergence
rate for the density and momentum and this scheme has stability with the different time steps.
The numerical experiments agree with the estimates derived theoretically. Obviously, this method
can be expanded to the case of many dimensions easily. There are some open questions including
the possible extension of the method to non-Darcy fluid flows.
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