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Abstract - It is known that solutions to the inviscid Proudman-Johnson equation subject to
a homogeneous three-point boundary condition can develop singularities in finite time. Given
the regularizing effect that damping can have, in this paper we consider the possibility of
finite-time singularity formation in solutions of the generalized inviscid Proudman-Johnson
equation with damping subject to the same homogeneous three-point boundary condition.
In particular, we will derive criteria the initial condition must satisfy in order for solutions
to blowup in finite time under the effect of a smooth time-dependent damping term.
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1 Introduction

We study the initial value problem (IVP){
uxxt + uuxxx + βuxuxx + α(t)uxx = 0, x ∈ [0, 1], t > 0,

u(x, 0) = u0(x), x ∈ [0, 1],
(1)

where β = n−3
n−1 , n ∈ Z+, n ≥ 2, and u(x, t) satisfies the homogeneous three-point boundary

condition
u(1, t) = ux(0, t) = ux(1, t) = 0 (2)

Equation
uxxt + uuxxx + βuxuxx + α(t)uxx = 0 (3)

can be obtained by imposing on the incompressible n−dimensional Euler equations with
damping

ut + (u · ∇)u + α(t)∆u = −∇p, ∇ · u = 0

velocities of the form

u(x,x′, t) = (u(x, t),− x′

n− 1
ux(x, t))

for x′ = {x2, ..., xn}, or by using the cylindrical coordinate representation
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ur = − r

n− 1
u(x, t), uθ = 0, ux = u(x, t)

where r = |x′| ([4], [22], [20], [14], [6], [16]).
We will refer to (1)-(2) as the initial boundary value problem (IBVP) for the general-

ized inviscid Proudman-Johnson equation with damping.
For β ∈ R, we remark that the undamped version of (3), i.e.

uxxt + uuxxx + βuxuxx = 0 (4)

arises in several additional physical and geometrical contexts. For instance, when β = 3,
(4) reduces to the Burgers’ equation of gas dynamics. For β = 2, it becomes the Hunter-
Saxton equation (HS) describing the orientation of waves in massive nematic liquid crys-
tals ([9], [3], [5], [24]). From a more geometric point of view, periodic solutions to the HS
equation also describe geodesics on the group D(S)\Rot(S) of orientation preserving dif-
feomorphisms on the unit circle modulo rigid rotations with respect to the right-invariant
metric ([10], [3], [21], [11])

〈f, g〉 =

∫
S
fxgxdx

Furthermore, Lenells and Misiolek [12] showed that, for any β, (4) arises as the geodesic
equation of the affine connection ∇(α) on the group D(S)\Rot(S). See also [2] for yet
another derivation of (4) as a geodesic equation.

From a more heuristic point of view, (3) may serve as a tool to better understand the
role that convection and stretching play in the regularity of solutions to one-dimensional
fluid evolution equations; it has been argued that the convection term can sometimes
cancel some of the nonlinear effects and contribute positively to regularity of solutions
([13], [8], [15]). More particularly, setting ω = uxx in (3) yields

ωt + uωx︸︷︷︸
convection

+β ωux︸︷︷︸
stretching

+α(t)ω = 0 (5)

In the undamped case (α(t) ≡ 0) and β = −1, (5) becomes a one-dimensional analogue
of the three-dimensional vorticity equation of incompressible inviscid fluids

ωt + u · ∇ω = ω · ∇u, ω = ∇× u

The nonlinear terms in equation (5) represent the competition between nonlinear con-
vection and stretching ([7], [23]). More particularly, the parameter β ∈ R is related to
the ratio of stretching to convection.

2 Previous Regularity Results

The global regularity of solutions of the damped equation (3) for a particular value of β is
discussed in [19] for solutions satisfying periodic boundary conditions. In the undamped
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case, finite-time singularity formation has been extensively studied for periodic solutions
as well as Dirichlet boundary conditions (see e.g. [17], [18] and references therein). How-
ever, we are unaware of any results concerning singularity formation in solutions of the
damped equation (3) with the homogeneous three-point boundary condition (2). In the
undamped case with homogeneous three-point boundary condition (2), the only result we
are aware of is Theorem (2.1) below established by Yuen ([1]) where conditions on the ini-
tial data leading to finite-time blowup are derived for β = −1. Therefore, it is of interest
to study whether finite-time blowup of solutions is still a possibility after incorporating
damping into the system as well as determining if varying the value of the parameter β has
any effect on the regularity of solutions which, in turn, could lead to a better understand-
ing of the competing effects between nonlinear convection and stretching as discussed at
the end of the previous section.

Theorem 2.1 (Yuen [1]) Consider the C3 solutions to the IBVP (1)-(2) for the inviscid
undamped Proudman Johnson equation (n = 2, α(t) ≡ 0). If the initial velocity satisfies

U0 =

∫ 1

0

u′0(x) dx = −u0(0) > 0

then the solutions blowup on or before the finite time 1/(2U0).

The outline of the paper is a follows. In Section 3, we prove finite-time blowup of
solutions to (1)-(2) with arbitrary smooth and bounded time-dependent damping term,
while the formation of singularities in finite time with smooth and unbounded damping
term is discussed in Section 4.

3 Finite-time Blowup with Smooth, bounded Damping

In this section, we will derive conditions on the initial data u0(x) which show that the
presence of a smooth (bounded or unbounded) time-dependent damping term α(t) is
insufficient to arrest finite-time blowup for any value of the parameter β ∈ R.

Theorem 3.1 Consider the IBVP (1)-(2) for the generalized inviscid damped Proudman
Johnson equation with β = n−3

n−1 , n ∈ Z+, n ≥ 2, initial data u0(x) ∈ C∞([0, 1]), and
smooth bounded damping term α(t) : [0,∞)→ R+.

Set

H0 = −
∫ 1

0

u′0(x) dx = u0(0)

and
M := sup

t∈[0,∞)

α(t) (6)

for some M ∈ R+. If

H0 < M

(
1− n
n

)
, (7)
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then

lim
t↗t∗

u(0, t) = −∞ (8)

for positive t∗ given by

t∗ = − 1

M
ln

(
1− M(1− n)

nH0

)
Proof.

Multiplying (3) by x, integrating over x ∈ [0, 1] and using (2) gives

H ′(t) + α(t)H(t) +
n

n− 1
‖ux(·, t)‖22 = 0 (9)

for

H(t) = −
∫ 1

0

ux(x, t) dx = u(0, t) (10)

and where ‖ux(·, t)‖2 represents the L2([0, 1]) norm of ux, i.e.

‖ux(·, t)‖2L2([0,1]) =

∫ 1

0

(ux(x, t))
2 dx

Now, the Cauchy-Schwarz inequality implies that

H2 ≤ ‖ux(·, t)‖22

and so equation (9) yields the inequality

H ′(t) + α(t)H(t) +
n

n− 1
H2 ≤ 0 (11)

Setting f = H−1 in (11) and using an integrating factor argument we obtain

d

dt

(
f(t)e−

∫ t
0 α(s) ds

)
≥ n

n− 1
e−

∫ t
0 α(s) ds

which gives, after integrating,

1

H(t)
≥ n(1 +H0g(t))

(n− 1)H0g′(t)
(12)

for H0 = H(0) and

g(t) =
n

n− 1

∫ t

0

e−
∫ s
0 α(z) dz ds (13)

Next, from (6),
α(t) ≤M
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for all t ∈ [0,∞) and some M ∈ R+. Consequently,

g′(t) ≥ n

n− 1
e−Mt

and, after integrating,

g(t) ≥ n

n− 1

(
1− e−Mt

M

)
Using these inequalities on (12) we obtain

1

H(t)
≥ Λ(t) (14)

for

Λ(t) =
nN(t)

(n− 1)2MH0g′(t)
(15)

and
N(t) = M(n− 1) + nH0(1− e−Mt)

Now, (7)ii) implies that

lim
t→∞

N(t) = M(n− 1) + nH0 < 0

This, along with

N(0) = M(n− 1) > 0, N ′(t) = nMH0e
−Mt < 0 and N(t) ∈ C([0,∞))

implies the existence of a finite time t∗ > 0 such that

lim
t↗t∗

N(t) = 0 (16)

In turn, the above argument implies that Λ(t) < 0 when t ∈ [0, t∗) and

lim
t↗t∗

Λ(t) = 0

Finally, (11) gives
H ′(t) + α(t)H(t) ≤ 0

which yields

H(t) ≤ H0 e
−

∫ t
0 α(s)ds (17)

Since H0 < 0, (17) implies that H(t) < 0 for as long as it exists. Thus

0 ≥ 1

H(t)
≥ Λ(t) (18)

and the Theorem follows in the limit as t approaches t∗ in (18).
�
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4 Finite-time Blowup with Smooth, unbounded Damping

In Theorem 3.1 of the previous section, finite-time blowup was established for smooth
and bounded time-dependent damping. In Theorem 4.1 below we show that finite-time
blowup is still possible with smooth but unbounded time-dependent damping.

Theorem 4.1 Consider the IBVP (1)-(2) for the generalized inviscid damped Proudman
Johnson equation with β = n−3

n−1 , n ∈ Z+, n ≥ 2, and initial data u0(x) ∈ C∞([0, 1]). Let
E1(x) be the exponential integral

E1(x) =

∫ ∞
x

e−t

t
dt, x > 0 (19)

If

u0(0) < − c(n− 1)

ne1/cE1(1/c)
(20)

for c = α′(0) ∈ R+, then there exists smooth, unbounded damping α(t) : [0,∞)→ R+

and a finite time t∗ > 0 such that

lim
t↗t∗

u(0, t) = −∞ (21)

Proof.
Suppose

H0 = −
∫ 1

0

u′0(x) dx = u0(0) < 0

From (12) and (17) we have that

0 >
1

H(t)
≥ n(1 +H0g(t))

(n− 1)H0g′(t)
(22)

for g(t) as in (13) and n ∈ Z+, n ≥ 2. Set

α(t) = ect

for some c ∈ R+. Then, after some straightforward computations, we can write (22)
as

0 >
1

H(t)
≥ 1 +H0φ(n)η(t)

e
1
cH0e

− ect

c

(23)

for

φ(n) =
ne

1
c

c(n− 1)

and
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η(t) =

∫ ect

c

1
c

e−u

u
du

Note that η(0) = 0, while η′(t) > 0 and η′′(t) < 0 for all t ∈ [0,∞). Moreover, for the
exponential integral E1(x) as defined in (19), we have that

lim
t→∞

η(t) = E1(1/c)

The above remarks, along with the fact that the denominator of the right hand-side
of (23) is negative for all t ∈ [0,∞), imply that if H0 = u0(0) satisfies (20), then there
exists a finite time t∗ > 0 such that (21) follows.

�

Remark 4.2 Below are some sample upper bounds (20) (computed using Mathematica)
for the initial data H0 in Theorem 4.1 for certain values of n and c.

• If n = 2 and c = 1, then

H0 < −
1

2eE1(1)
≈ −0.84

• If n = 2 and c = 0.01, then

H0 < −
0.01

2e100E1(100)
≈ −0.51

5 Conclusions and Open Questions

In this paper, we derived conditions on the initial data which guarantee the formation
of singularities in finite time in solutions of the generalized inviscid Proudman-Johnson
when arbitrary smooth and bounded damping is incorporated into the system. Moreover,
we have shown that there exist smooth (but unbounded) damping terms for which finite-
time blowup is also possible. It is unknown if solutions will persist for all time (instead
of blowing up in finite time) if the initial data satisfies the opposite of inequality (7)ii) in
Theorem 3.1, namely, if

H0 ≥M

(
1− n
n

)
It is also of interest to investigate how solutions to other fluid-related models such as

the Boussinesq equations or the Magneto-Hydrodynamic (MHD) equations behave under
a similar homogeneous three-point boundary type condition.
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