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1 Introduction

Random matrix theory was used by Eugene Wigner as a mechanism for modeling the
limiting behavior of the energy distribution of heavy nuclei. The states of individual
heavy nuclei are difficult to determine using the Schrödinger Equation, so instead one can
examine the eigenvalues of random matrices and thereby obtain information about the
statistical behavior of the system, as done in [12].

The techniques from nuclear physics were later abstracted to ensembles of random
matrices. The motivation for choice of ensemble corresponded to the properties of phys-
ical systems. For example, this was the motivation for studying ensembles of real sym-
metric matrices, self-adjoint matrices, and Gaussian Orthogonal Ensembles. Given the
importance of studying eigenvalues to both physics (as in [11, 26]) and to other fields of
mathematics such as analytic number theory (as in [15, 16]), the eigenvalue distribution
of the ensemble is the focus of study.

In general, it is rare to find a named, closed form limiting distribution of the eigenvalue
distributions for a given ensemble of random matrices. For example, in the ensemble of
Toeplitz matrices studied in [9] and [13], the distribution seemed to be approaching a
Gaussian distribution, but there were Diophantine obstructions with the index combina-
torics of the random variable entries in the matrices. These obstructions prevented the
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distribution from being a Gaussian distribution, and a closed form is still not known. Fol-
lowing these difficulties, an attempt to overcome the obstructions and increase symmetry
was done by adding palindromicity; this is sufficient to guarantee almost sure convergence
to the Gaussian distribution [18]. Many other related ensembles have been thoroughly
investigated, for example in [2, 3, 7, 14, 17, 20].

In this paper, we formulate a new matrix operation, “swirl,” based on the symmetry
of the concentric even matrix ensemble. An example of a matrix in this ensemble is

x2 x1 x0 x3 x3 x0 x1 x2
x1 x0 x3 x2 x2 x3 x0 x1
x0 x3 x2 x1 x1 x2 x3 x0
x3 x2 x1 x0 x0 x1 x2 x3
x3 x2 x1 x0 x0 x1 x2 x3
x0 x3 x2 x1 x1 x2 x3 x0
x1 x0 x3 x2 x2 x3 x0 x1
x2 x1 x0 x3 x3 x0 x1 x2


.

Notably, the xi are variables drawn independently from a probability distribution with
mean zero, variance one, and finite higher moments.

We chose this ensemble with the hope that, by increasing symmetry. we would be able
to obtain a closed form for the limiting spectral distribution.

It is advantageous to understand such matrices in block matrix form, as evidenced
by [3]. In this vein, we split the matrices in the concentric even ensemble into blocks or
quadrants and defined the swirl operation using two N × N input matrices, A and X,
to create the larger block matrix of size 2N × 2N corresponding to the concentric even
matrix, where A is the upper right quadrant and X is the exchange matrix. That is,

swirl(A,X) =

(
AX A
XAX XA

)
. (1)

In concentric even matrices, A is a circulant Toeplitz matrix and AX is a circulant
Hankel matrix. We reduce studying the concentric even ensemble to studying circulant
Hankel matrices with several theorems about the behavior of tr(swirl(A,X)) in Section
3. Hankel matrices arise in a multitude of applications across fields of mathematics and
physics: differential equations, functional analysis, statistics, probability theory, control
theory, and more (see [4, 21, 22], for example). Their symmetry also makes them a heavily
studied family in random matrix theory, as in [4, 8]. Circulant Hankel matrices also hap-
pen to be even centrosymmetric matrices, which have additional specialized applications
in physics, for example in [10].

In Section 4 we characterize the summands of the trace of these matrices in terms
of the number of repeated entries and compute the moments via combinatorial degree of
freedom arguments. By these methods, we obtain a novel combinatorial proof showing
that the limiting spectral distribution of the random matrix ensemble of circulant Hankel
matrices converges almost surely to the symmetrized Rayleigh distribution (for an earlier
proof relying on direct computation, see [9]). As we discuss in Appendix C, our methods
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are generally applicable to many random matrix ensembles. In particular, we have a new
proof of the following theorem.

Theorem 1.1 (Bryc-Dembo-Jiang [9]) Let µA,N(x) be the empirical spectral measure
of the N × N circulant Hankel random matrix ensemble populated by entries from a
sequence of random variables A from a distribution p with mean 0, variance 1, and finite
higher moments. Then,

lim
N→∞

µA,N(x)→ |x|e−x2 (2)

almost surely.

Notably, |x|e−x2 is the symmetrized Rayleigh distribution, with many known applica-
tions to physics (see [23]).

As a consequence of the results of Section 3, we also characterize the limiting spectral
distribution of a particular swirl ensemble.

Corollary 1.2 Let G2N = swirl(A, J) for J the N ×N exchange matrix and A a random
N × N circulant Toeplitz matrix. As N → ∞, the limiting spectral measure of this
ensemble converges almost surely to a symmetrized Rayleigh distribution.
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Figure 1: Histogram of eigenvalues for one hundred 40 × 40 random circulant Hankel
matrices. A symmetrized Rayleigh distribution is shown in red.

Many block random matrix ensembles have been investigated in the past (for example,
[17]). Some of these have even yielded remarkably similar limiting empirical spectral
distributions (see Figure 3 of [20]).

The swirl operation is very rich and lends itself to much further study. In particular,
a natural next step is to study matrix ensembles determined by different choices of A and
X. We discuss some natural next steps in Section 5.
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2 Preliminaries

We characterize the distribution of the eigenvalues of several random matrix ensembles
by defining a spectral measure over subfamilies of random matrices from the ensemble.
Let A be an element of a family of N × N random matrices from some ensemble where
the entries are drawn from a probability distribution p with mean 0, variance 1, and finite
higher moments.

The moment-generating function of a real-valued random variable uniquely specifies
its probability distribution. By requiring the probability distributions have finite higher
moments, this necessarily implies that there are finite lower moments, and additionally
that this moment-generating function exists. We derive the associated ensemble’s limiting
spectral distribution from these moments.

This is the central idea of the method of moments. We compute the expected value
of the moments for random matrices for a fixed size, N , and then take the limit of this as
N goes to infinity. This limit yields the moments of the spectral distribution of the given
ensemble for infinite dimensions (the limiting spectral distribution). We refer to [13] for
additional details on our particular application of the method of moments.

We use the Eigenvalue Trace Lemma to relate the eigenvalues of the random matrices
to the matrix elements.

Lemma 2.1 (Eigenvalue Trace Lemma) Let λi(A) be the eigenvalues of an N × N
matrix A. Then

N∑
i=1

λki (A) = tr(Ak). (3)

Let c be the number of unique rows in A. For example, if a particular row appears
twice in the matrix, the second instance of that row does not contribute to c. A trivially
has at most c many nonzero eigenvalues, and we adjust the spectral measure accordingly.
Note that c is fixed for a given N and matrix structure.

Then, we define the empirical spectral measure of AN as the following measure.

Definition 2.2 Let p be a probability density function with mean 0, variance 1, and finite
higher moments. Let AN be an N ×N random matrix from an ensemble A with entries
drawn independently from p. Then the empirical spectral measure of AN is defined as

µAN
(x)dx :=

1

c

c∑
i=1

δ

(
x−
√
cλi(AN)

N

)
dx, (4)

where δ(x) is the Dirac-delta functional, the λi(AN) are the nonzero eigenvalues of AN ,
and c is as defined above.

Remark 2.3 The
√
c/N scaling factor is derived heuristically from the Central Limit

Theorem. By computing the trace of A2 via the Eigenvalue Trace Lemma, we get

E[tr(A2)] = N2 =
N∑
i=1

E[λi(A)2], (5)

the pump journal of undergraduate research 5 (2022), 122–147 125



suggesting that the magnitude of the eigenvalues must be roughly N/
√
c each in expec-

tation since the expectation of an entry squared is 1, by our definition of p.

Via the method of moments, we will be able to understand the spectral distribution
of these eigenvalues. In this instance, the convergence of the moments of the spectral
distribution is enough to show the almost sure convergence of the spectral distribution
(by the methods of [13]). From the definition of the spectral measure µA,N(x) in terms of
the Dirac-delta functional, we may compute its moments.

Remark 2.4 The moments of the spectral measure of A are

Mk(A,N) :=

∫ ∞
−∞

xkµA,N(x)dx =
ck/2−1

Nk

c∑
i=1

λki (A). (6)

Notice that by the Eigenvalue Trace Lemma, Mk(A,N) = ck/2−1

Nk tr(Ak).
Finally, we are interested in averaging these moments over the entire family of matrices

that A belongs to. As is standard, we define the following.

Definition 2.5 Let Mk(N) be the average of Mk(A,N) over all A in our chosen family
of matrices.

Our main result is that limN→∞Mk(N) exists and that there is a universal limiting
distribution for several families of matrices.

In the following, we will calculate Mk as a sum of terms (via the Eigenvalue Trace
Lemma). We will show that some terms are negligible by showing that they are Ok(1)
(where f(n) = Ok(g(n)) if, for k ∈ Z+ fixed, there exists n0 and c such that for all
n > n0, f(n) ≤ cg(n)).

In this paper, we investigate swirl ensembles and circulant Hankel matrices.

Definition 2.6 An N × N circulant Hankel matrix HN = (aij) is defined by aij =
ak` ⇐⇒ i+ j ≡ k + ` (mod N).

HN =



b0 b1 b2 · · · bN−3 bN−2 bN−1
b1 b2 b3 · · · bN−2 bN−1 b0
b2 b3 b4 · · · bN−1 b0 b1
...

...
...

...
...

...
bN−3 bN−2 bN−1 · · · bN−6 bN−5 bN−4
bN−2 bN−1 b0 · · · bN−5 bN−4 bN−3
bN−1 b0 b1 · · · bN−4 bN−3 bN−2


, aij = b[i+j]N .

Note that circulant Hankel matrices are the product of circulant Toeplitz matrices and
exchange matrices, with the former considered in [9, 13]. In [6], circulant Hankel matrices
are referred to as reverse circulant matrices.

The n × n exchange matrix is the matrix with 1’s along the antidiagonal and 0’s
elsewhere. For example, the 4× 4 exchange matrix is as follows:
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0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

In general, Toeplitz matrices are diagonal constant matrices. Circulant Toeplitz ma-
trices are Toeplitz matrices which additionally satisfy aij = ak` ⇐⇒ i − j ≡ k − `
(mod N). That is, the diagonals wrap around around the edges of the matrix. Below is
an example of a 4× 4 circulant Toeplitz matrix.

0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0


3 Swirl Matrices

3.1 Motivation

For A an N × N circulant Toeplitz matrix, and J the N × N exchange matrix with 1’s
on the antidiagonal and zeroes elsewhere, the 2N × 2N concentric even matrix is given
by the following: (

AJ A
JAJ JA

)
.

The swirl operation was inspired by radially symmetric matrices of the following form:

x2 x1 x0 x3 x3 x0 x1 x2
x1 x0 x3 x2 x2 x3 x0 x1
x0 x3 x2 x1 x1 x2 x3 x0
x3 x2 x1 x0 x0 x1 x2 x3
x3 x2 x1 x0 x0 x1 x2 x3
x0 x3 x2 x1 x1 x2 x3 x0
x1 x0 x3 x2 x2 x3 x0 x1
x2 x1 x0 x3 x3 x0 x1 x2


.

We refer to such matrices as “concentric even matrices.” Note that not only are the
circles about the center of the matrix composed of equal entries, but also these entries are
repeated in later circles such that each matrix entry appears an equal number of times.
This was intentional in an effort to increase symmetry and derive a closed form limiting
spectral distribution. For a 2N × 2N matrix of this form, each entry appears exactly
4N times (N times in each N × N quadrant). Upon close inspection, it is apparent
that the N × N submatrix in the top right of a 2N × 2N concentric even matrix is an
N × N circulant Toeplitz matrix (which is not necessarily symmetric). Moreover, the
other three quadrants of the matrix may be generated from this circulant Toeplitz matrix
via a clockwise rotation of the entries.
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This block decomposition of the concentric even matrices motivates the following def-
inition and the focus of this section.

Definition 3.1 Let A and X be N ×N matrices. We define swirl(A,X) as the 2N ×2N
matrix where

swirl(A,X) =

(
AX A
XAX XA

)
. (7)

We aim to characterize the limiting spectral distribution of swirl(A,X) for A random
and X fixed. To do so, we relate tr(swirl(A,X)k) to tr((AX)k) via the Eigenvalue Trace
Lemma.

Lemma 3.2 Observe that

swirl(A,X) =

(
AX A
XAX XA

)
=

(
AX 0

0 0

)
+

(
0 A
0 0

)
+

(
0 0

XAX 0

)
+

(
0 0
0 XA

)
. (8)

This observation vastly simplifies the computation of tr(((swirl(A,X))k).

Notation 3.3 We adopt a convenient shorthand notation for block matrices with four
N ×N blocks which are 0 in 3 blocks. For example, a 2N × 2N matrix of the form with
zeroes necessarily everywhere except the top right corner will be referred to as a matrix
B12. That is, B12 is of the form (

0 Y
0 0

)
for Y an N×N matrix. Define B11, B21, and B22 similarly with the indices corresponding
to the block that is not necessarily zero everywhere.

Lemma 3.4 BijBk` = 0 if j 6= k and is of the form Bi` otherwise.

3.2 Computing tr((swirl(A,X))k)

Recall the following facts:
tr(CD) = tr(DC) (9)

and
tr(C +D) = tr(C) + tr(D) (10)

for N×N matrices C and D. We are now ready to relate tr((swirl(A,X))k) to tr((AX)k).

Theorem 3.5 For A and X both N ×N matrices, tr((swirl(A,X))k) = 2k tr((AX)k).

Proof. Any term in the expansion of

(swirl(A,X))k =

((
AX 0

0 0

)
+

(
0 A
0 0

)
+

(
0 0

XAX 0

)
+

(
0 0
0 XA

))k
=
∑

Bi1j1Bi2j2 · · ·Bikjk
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is of the form Bi1jk . Since trace is additive, we have that a term contributes 0 to the trace
of (swirl(A,X))k if i1 6= jk; if they are not equal, the main diagonal of the matrix is all
zeroes.

As such, by Lemma 3.4 and the above, the nonzero summands of (swirl(A,X))k cor-
respond to products Bi1j1Bi2j2 · · ·Bikjk where j` = i`+1 for 1 ≤ ` ≤ k − 1 and jk = i1.
There are 2k such summands since one can choose the first indices of the k matrices in
the summand in 2k ways. Then, the second indices are exactly determined by the above
requirements.

Observe that the only nonzero block of a Bi1jk matrix in the trace expansion of
tr((swirl(A,X))k) is a product of matrices. By the construction of swirl, this product
begins with A if i1 = 1 and ends with A if jk = 2. Also observe that this product begins
with an X if i1 = 2, and ends with X if jk = 1. All such products will start with one of A
or X and end with the opposite. These products will also not have consecutive repeated
A’s or X’s. These properties follow from Lemma 3.4 and the definition of swirl.

In order for this product of matrices to contribute to the trace, note that the first and
last index of such a product must be equal (or else it will not be a diagonal entry). Thus,
there must be an equal number of matrices of the form B12 and B21 in any contributing
product. As such, each nonzero summand in the expansion of tr((swirl(A,X))k) (with
swirl(A,X) expressed as B11+B12+B21+B22) will be of the form tr((XA)k) or tr((AX)k).
Consequently, there are 2k such nonzero contributing terms and

tr((swirl(A,X))k) = 2k tr((AX)k), (11)

by the cyclic property of trace. �
Given that the trace of the kth power of a matrix completely determines the kth moment

of its empirical spectral distribution, Theorem 3.5 allows us to reduce characterizing
the limiting spectral distribution of swirl(A,X) ensembles to characterizing the limiting
spectral distribution of AX matrices.

In Appendix A and Appendix B, we discuss additional avenues for working with swirl,
such as when A is not symmetric or iterating swirl.

4 Circulant Hankel Matrices

In all the ensembles that follow, we assume that the matrices are constructed from a
sequence of independently and identically distributed random variables (i.i.d.r.v.) with
distribution p having mean 0, variance 1, and finite higher moments. Elements of this
sequence correspond to matrix entries via the symmetry of our given ensemble.

4.1 Moments via powers of AX

From Theorem 3.5, studying the trace of the even concentric swirl matrices reduces to
studying the trace of powers of HN = ANJN , with HN the N×N circulant Hankel matrix,
AN the N×N circulant Toeplitz matrix, and JN the N×N exchange matrix. The matrix
ensemble of circulant Hankel matrices is exceptional in its own right; its limiting spectral
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distribution converges almost surely to a symmetrized Rayleigh distribution (as shown
in [9]). In this section, we provide another proof of this remarkable result. We begin by
defining the empirical spectral measure for this ensemble of matrices. This measure, for
the normalized eigenvalues of our matrix H, is given by the following definition.

Definition 4.1 The empirical spectral measure of a random N × N circulant Hankel
matrix is

µHN
(x)dx :=

1

N

N∑
i=1

δ

(
x− λi(HN)√

N

)
dx. (12)

where δ(x) is the Dirac-delta functional and the λi are the non-zero eigenvalues of HN .

Remark 4.2 The
√
N scaling factor is derived heuristically. By computing the trace of

H2
N , we obtain

E[tr(H2
N)] = N2 =

N∑
i=1

λi(HN)2, (13)

suggesting that the eigenvalues must be roughly
√
N each in expectation.

In order to use the method of moments, we compute the kth moment for the empirical
spectral distribution of a random matrix HN , µHN

(x).

Remark 4.3 The kth moment of the empirical spectral distribution of the random matrix
HN , averaged over an ensemble, is given by

Mk(N) :=

∫ ∞
−∞

xkµHN
(x)dx =

1

N
k
2
+1

N∑
i=1

E[λki (HN)] =
1

N
k
2
+1

E[tr(Hk
N)]. (14)

We use Mk to denote limN→∞Mk(N).

This standard computation follows from the properties of the Dirac delta functional
and the Eigenvalue Trace Lemma.

Proposition 4.4 We have M1 = 0 and M2 = 1.

Proof. The first moment is immediate from E[tr(HN)] = 0. The second moment follows
from substituting E[tr(H2

N)] = N2 into the formula (14). �
In order to compute Mk for k ≥ 2 we consider the limiting behavior of the terms in

the sum combinatorially. It is useful to note the following fact.

Remark 4.5 In HN = ANJN , hij = hk` if and only if i+ j ≡N k+ `, where we index the
matrix beginning at 0.

To build intuition, we now explicitly calculate the third moment combinatorially.

Proposition 4.6 We have M3 = 0.
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Proof. Note that

tr(H3
N) =

N∑
i1=1

N∑
i2=1

N∑
i3=1

hi1i2hi2i3hi3i1 (15)

where hijij+1
is the matrix entry of HN at the ij

th row and ij+1
th column. If any of

the random variables in a summand is not equal to any of the others, we can write the
expectation of the whole summand as a product of the expectation of the singleton term
and the rest of the summand by the independence of our random variables. Since all the
random variables have mean 0, such a term contributes zero. As such, there is exactly
one option for contributing summands: all three matrix entries are equal.

For this to hold, we must have hi1i2 = hi2i3 = hi3i1 . So we must have

i1 + i2 ≡N i2 + i3 (16)

i2 + i3 ≡N i3 + i1

i3 + i1 ≡N i1 + i2

Thus we have i1 ≡N i2 ≡N i3, leaving only one free variable. Since each of our i.i.d
random variables have finite moments by assuming, terms of this kind contribute O(N) to

the expectation of tr(H4
N). Thus, by Remark 4.3, such terms contribute limN→∞

O(N)

N5/2 = 0
to the third moment in the limit. �

Next, we show M2k = k! for all k and thus limN→∞ µHN
(x), averaged over all HN

converges to the symmetrized Rayleigh distribution.
We begin with a sample calculation showing M4 = 2 to build intuition for the proof.

Proposition 4.7 We have M4 = 2.

Proof. Note that

tr(H4
N) =

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

hi1i2hi2i3hi3i4hi4i1 (17)

where hijij+1
is the matrix entry of HN at the ij

th row and ij+1
th column. As before, if

any of the random variables in a summand is not equal to any of the others, we can write
the expectation of the whole summand as a product of the expectation of the singleton
term and the rest of the summand by the independence of our random variables. Since
all the random variables have mean 0, such a term contributes zero. As such, there are
only two options for contributing summands: four equal matrix entries or two pairs of
equal matrix entries.

Case 1 In this case, there are four summands that are all matched. That is, hi1i2 =
hi2i3 = hi3i4 = hi4i1 . Up to relabeling, the first case yields the system of equations

i1 + i2 ≡N i2 + i3 (18)

i2 + i3 ≡N i3 + i4

i3 + i4 ≡N i4 + i1

i4 + i1 ≡N i1 + i2

the pump journal of undergraduate research 5 (2022), 122–147 131



This implies i1 ≡N i3 and i2 ≡N i4, leaving only two free variables. Since there
are only 2 degrees of freedom in this case and each of our i.i.d. random variables
have finite moments by assumption, terms of this kind contributes O(N2) to the

expectation of tr(H4
N). Thus, by Remark 4.3, such terms contribute limN→∞

O(N2)
N3 =

0 to the fourth moment in the limit.

Notably, the system of equations corresponds to the equation matrix
1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1


which has nullity 2. Thus, since vectors satisfying this system of equations are
exactly those in the null space of this matrix, there are O(N2) valid linear com-
binations of basis vectors of the null space, and the random variables have finite
fourth moments, such terms contribute O(N2) to the expectation of tr(H4

N). This
alternate linear algebraic formulation is used in our the proof of Theorem 4.12.

Case 2 In this case, all summands are paired. This case of matching the random vari-
ables into pairs has two subcases.

Subcase 2.1 Pair nonadjacent random variables, that is, hi1i2 = hi3i4 , hi2i3 = hi4i1 .
This pairing yields the following system of equations:

i1 + i2 ≡N i3 + i4 (19)

i2 + i3 ≡N i4 + i1

i3 + i4 ≡N i1 + i2

i4 + i1 ≡N i2 + i3

This implies i2 ≡N i4 and i1 ≡N i3. Thus, there are only two degrees of freedom
in this case, and it does not contribute in the limit.

Note that the equation matrix corresponding to the system of equations has
nullity 2, an alternative proof that this case cannot contribute.

Subcase 2.2 Pair adjacent random variables. For example, hi1i2 = hi2i3 and hi3i4 =
hi4i1 . Note that there are two such pairings. Up to relabeling, this pairing yields
the following system of equations:

i1 + i2 ≡N i2 + i3 (20)

i2 + i3 ≡N i1 + i2

i3 + i4 ≡N i4 + i1

i4 + i1 ≡N i3 + i4

This implies only i1 ≡N i3, yielding 3 degrees of freedom. Thus, the terms in
this case contribute in the limit. Fixing i1, there is a unique choice for i3 and
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N choices for both i2 and i4, yielding 2N3 choices total after iterating over all
i1 and both choices of pairing orientation.

Substituting into Remark 4.3, we then get that this case contributes precisely
2 to M4 in the limit and M4 = 2, since this is the only nontrivial contributing
case.

�
We see that only a select few of the summands in the computation of moments con-

tribute in the limit. We formalize this observation in the following lemmas.

Lemma 4.8 For moments Mk, where k ≥ 1, the only contributing summands xn1
j1
· · ·xn`

j`

in the trace expansion are those where ni = 2 for all 1 ≤ i ≤ `.

Proof. Consider any summand in tr(Hk
N), xn1

j1
· · ·xn`

j`
, where

∑̀
i=1

ni = k (21)

and each ni ≥ 1.
Now, if any ni = 1, the expectation of the summand is 0. We can see this by analyz-

ing tr(Hk
N) via the Eigenvalue Trace Lemma. Observe that since the entries of HN are

independent, if any are to the first power in a summand in the expansion of tr(Hk
N), the

expected value of the entire summand is zero. For example,

E[hi1i2hi2i3hi3i1 ] = E[xaxbxb] = E[xa]E[x2b ] = 0 · 1 = 0. (22)

Thus, at a minimum, the entries must be matched in pairs. So, we may assume each
ni ≥ 2.

If there is at least one factor in the summand with nr ≥ 3, there are at most dk
2
e

degrees of freedom of terms with such groupings—there are at most N b
k−3
2
c+1 = N d

k
2
e−1

ways to choose the xji and an additional N ways to fix a matrix index in some term.
There are then a constant in k number of ways to assign each factor in the summand to

a particular xji , and then the choice of one index of a matrix entry completely determines
the remaining matrix indices via Remark 4.5. Note that each grouping of ni matrix entries
equal to xji contributes

E[(xji)
ni ] = pni

= Ok(1) (23)

since p has finite higher moments by assumption (where pni
is the ni

th moment of p). As
such, each contributing term contributes Ok(1) to Mk.

Hence, each such term contributes

lim
N→∞

O(N d
k
2
e)

N
k
2
+1

= 0 (24)

to Mk, as desired. �

the pump journal of undergraduate research 5 (2022), 122–147 133



Remark 4.9 The argument in Lemma 4.8 also shows that there are at most k+1 degrees
of freedom when assigning xji in pairs in the computation of tr(H2k

N ).

Remark 4.10 The argument in Lemma 4.8 shows that M2k+1 = 0 for all k ∈ Z≥0.

For the following arguments, consider an index “even” if its subscript is even. Similarly
define odd indices. For example, consider

tr(H4
N) =

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

hi1i2hi2i3hi3i4hi4i1 . (25)

We view i1, i3 as the “odd” indices and i2, i4 as the “even” indices.

Lemma 4.11 The pairings of odd indices to even indices contribute k! to M2k.

Proof. Consider the system of equations resultant in this case. Each relation can be
assumed to be of the general form

ij + ij+1 ≡N i` + i`+1 (26)

for j even and ` odd. Note in particular that all even indices arise on the left-hand side of
such relations as the first term, and all odds similarly as the first term on the right-hand
side. Since in such relations each index is added to the subsequent index, every index
appears in a sum exactly once on both sides of the equations.

Interpret these equations as 1× 2k row vectors with ones in the entries corresponding
to the indices on the left-hand side of the relations, negative ones corresponding to those
on the right-hand side, and zeroes otherwise, as in Proposition 4.7. Now, from the above
observation, the sum of these k row vectors is 0. This implies they are linearly dependent.
This means the matrix given by this system of equations has nullity at least k + 1. Note
that vectors x in the null space are exactly solutions to

Ex = 0 (27)

for E the matrix of these row vectors. This implies we have k + 1 degrees of freedom
in this case. From Remark 4.9, we thus have exactly k + 1 degrees of freedom, so these
pairings contribute exactly their constant term to M2k in the limit.

To count the number of odd-even pairings, we choose an odd and an even index to
pair in k2 ways. Then we repeat until there are no indices left to pair, yielding (k!)2.
However, we introduced an arbitrary ordering of the pairs in this process, so we correct
by dividing by k!, yielding k! as desired. Note that, given the choice of a single index and
pairings, every index is determined uniquely (regardless of the modulo N). �

Now we complete the proof by showing that the other pairings of indices do not
contribute in the limit.

Theorem 4.12 M2k = k!.
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Proof. From Lemma 4.11, it suffices to show that any arrangement of pairs including an
odd-odd or even-even index matching will not contribute. One way to do so is to show
that the k row vectors corresponding to the resultant system of equations are all linearly
independent and thus the rank of the corresponding matrix is k, implying a nullity of k
and less than k + 1 degrees of freedom. Note that there being an odd-odd index pairing
implies that there must be an even-even index pairing.

Step 1 We will show that if there is an odd-odd index pairing, then the equations corre-
sponding to even-odd index pairings are linearly independent as row vectors.

Fix a relation given by such an even-odd index pairing. Each side of each relation
of the form i` + i`+1 ≡N ir + ir+1 can be conceptualized as a “first” index (matched
index) plus a “second” index. For the sake of consistency, when converting such
relations into row vectors (by moving all the terms to a single side), we negate the
side with the odd first index. In order to show linear independence of the even-odd
row vectors, it suffices to show that no nonempty linear combination of them sums
to 0.

Note that each index appears at most twice amongst the odd-even pair relations.
In particular, if we fix

i` + i`+1 ≡N i`+2i+1 + i`+2i+2 (28)

to be in our linear combination, with ` even, this yields a row vector of the form

(0, 0, . . . , 1, 1, 0, . . . , 0,−1− 1, 0, . . . , 0)

with the 1’s in the ` and (` + 1)st positions and the −1’s in the (` + 2i + 1)st and
(` + 2i + 2)th positions and all other positions 0 (note the indices range from 1 to
2k).

Crucially, in order to form a linear combination of even-odd vectors summing to 0,
we must nullify each index in the sum. Each index appears at most once as a first
and a second index. Given our signing convention, even indices are positive as first
indices and negative as second indices. Odds indices are negative as first indices and
positive as second indices. Note that, since each index occurs at most once as a first
index and a second index, the two expressions cannot be exactly equal. In order to
cancel out the positive contribution of i` to the `th column, we need to add the term
including i` as a second index. However, we then must cancel out the contribution
of i`−1 as a first index by including it as a second index. To do that, we must include
i`−2 as a first index. As such, we see that in order to cancel out the contribution
of each necessary term, we need to include every term as both a first and second
index. However, by assumption, there is an odd-odd index. Therefore, not every
index has a row vector corresponding to it as a first and second index. Thus, we
cannot cancel out the contribution to every column, and there is no nonempty linear
combination of vectors corresponding to the even-odd pair expressions that equals
0. We conclude that these row vectors are linearly independent.

the pump journal of undergraduate research 5 (2022), 122–147 135



Step 2 We will show that the row vectors corresponding to odd-odd pairs of indices
cannot be part of any nonempty linear combination of row vectors summing to zero
(the proof follows for even-even pairs as well).

Suppose indices ir and ir+2i are paired for r odd and i ≥ 1. The corresponding row
vector is of the form

(0, 0, . . . , 1, 1, 0, . . . , 0,−1− 1, 0, . . . , 0)

with 1’s in the rth and (r + 1)st indices and −1’s in the (r + 2i)th and (r + 2i+ 1)st

indices. As before, to cancel out the contribution of ir, we need ir to appear as
a second index and contribute negatively. As a result, ir−1 must appear as a first
index and contribute negatively. Then we need ir−1 to appear as a second index
and contribute positively to cancel out that contribution. This requires ir−2 to
appear as a first index and contribute positively. However, this implies that all first
odd indices must contribute positively, and all first even indices must contribute
negatively to achieve total cancellation. We know this cannot be the case as there
is an odd-odd pair and one of the first odd indices must thus contribute negatively.
As such, odd-odd and even-even pairs cannot be a part of linear combinations of
the row vectors summing to 0.

We conclude that a linearly dependent family of row vectors must be a subset of the
even-odd pair row vectors if it exists. However, from Step 1, this is impossible. So,
all of the row vectors are linearly independent. Thus, if there are odd-odd or even-
even index pairs, the rank of the matrix is k and the nullity is k. Since the nullity
of this matrix is a upper bound on the degrees of freedom in this case, such pairings
will not contribute in the limit. The only remaining pairings are all odd-even. From
Lemma 4.11 we conclude M2k = k!.

�
We are finally able to prove Theorem 1.1. We use in the proof that the moments of

the limiting spectral distribution of the Circulant Hankel ensemble are the same as the
moments of a symmetrized Rayleigh distribution. More broadly, a Rayleigh distribution
is a Weibull distribution with fixed parameters. For our purposes, denote the Weibull
distribution with scale parameter λ and shape parameter k by the following:

f(x;λ, k) =
kxk−1

xλk
e−(x/λ)

k

, (29)

for x ≥ 0 and 0 otherwise. As our eigenvalue distributions are symmetric, we symmetrize
the distribution by replacing x with |x| and dividing through by 2 to retain∫ ∞

−∞

f(|x|;λ, k)

2
dx = 1. (30)

This symmetrization notably has no effect on the even moments of the distribution
and zeroes all the odd moments.
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The (2m)th moment of a Weibull distribution f(x;λ, k) is given by

m2m = λ2mΓ(2m/k + 1). (31)

When this distribution is Rayleigh, i.e., k = 2 and λ = 1, the 2mth moment is then
m!.

Theorem 1.1 (Bryc-Dembo-Jiang [9]) Let µA,N(x) be the empirical spectral measure
of the N × N circulant Hankel random matrix ensemble populated by entries from a
sequence of random variables A from a distribution p with mean 0, variance 1, and finite
higher moments. Then,

lim
N→∞

µA,N(x)→ |x|e−x2 (2)

almost surely.

Proof. This follows by the exact same argumentation as in Section 6 of [13] with plus
rather than minus modulo N . �

We may then conclude that the limiting spectral distribution of swirl ensembles on A
circulant Toeplitz and J an exchange matrix also converges almost surely to a symmetrized
Rayleigh distribution, the result of Corollary 1.2.

Corollary 1.2 Let G2N = swirl(A, J) for J the N ×N exchange matrix and A a random
N × N circulant Toeplitz matrix. As N → ∞, the limiting spectral measure of this
ensemble converges almost surely to a symmetrized Rayleigh distribution.

Proof. From the observation that swirl(A, J) trivially has half of its rows repeated, G2N

has at most N nonzero eigenvalues. The empirical spectral measure of the 2N × 2N
matrix B2N is thus given by the following equation:

µB2N
(x)dx :=

1

N

N∑
i=1

δ

(
x− λi(B2N)

2
√
N

)
dx. (32)

See Definition 2.2 for the derivation of the scaling factor. From Theorem 3.5, the kth

moment of the limiting spectral distribution of this ensemble equals

lim
N→∞

1

Nk/2+1
E[tr(Hk

N)]. (33)

As such, the kth moment in this case is exactly the kth moment of the limiting spectral
distribution of HN . The result then follows from Theorem 1.1. �

Remark 4.13 For an ensemble such that swirl(A,X) has no repeated rows, swirl(A,X)
would not have the same limiting spectral distribution as AX. Indeed, its moments would
be 2k times the moments of the limiting spectral distribution of AX. In the case of a
Weibull distribution, this would only increase the λ scaling parameter of the Weibull
distribution by a factor of

√
2.
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5 Future Work

5.1 Other Swirl Ensembles

Another possible next step is to study broader matrix ensembles related to swirl(A,X).
A good starting point is ensembles with X2 = I, due to the following theorem of Tao and
Yasuda [24].

Theorem 5.1 (Tao-Yasuda [24]) Let A and X be real symmetric matrices with X2 =
I.

• AX = XA if and only if the spectrum of A equals the spectrum of XA up to sign.

• AX = −XA if and only if the spectrum of A equals the spectrum of XA multiplied
by i.

In particular, if we choose ensembles A and X such that A and X are N × N real
symmetric matrices, X2 = I and AX = XA, then AX has all real eigenvalues.

Another interesting direction is to study the even powers of non-symmetric swirl en-
sembles. Proposition B.1 provides a useful starting point for such investigations.

Finally, given that circulant Toeplitz and circulant Hankel matrices yield rare named,
closed form limiting spectral distributions, it seems likely that they possess some intrin-
sic, special properties. Inspired by the work of [1, 5, 6, 20] on matrices with patterns
governed by link functions, we investigated circulant matrices with link functions along
different diagonals, but found the results disappointingly uninteresting. These results are
summarized in Appendix C.

A Iterating swirl

Another interesting avenue for swirl is iterating the operation.

Definition A.1 Let A,X be N ×N matrices. Let Xk be the block matrix with 2k−1 X’s
on the anti-diagonal and zeroes elsewhere. Note that X1 = X. Then, set

swirlk(A,X) := swirl(. . . swirl(swirl(swirl(A,X1), X2), X3), . . .), Xk) (34)

where swirl is repeated k times in the above.

We begin by analyzing the trace of iterated swirl matrices.

Proposition A.2 Fix A,X both N ×N matrices such that X2 = I and k a non-negative
integer. Then

tr(swirlk(A,X)) = 2k tr(AX). (35)
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Proof. We prove by induction. For k = 1, this follows from Theorem 3.5. Now, assume
this holds for r − 1 for r ≥ 2. Then,

swirlr(A,X) = swirl(swirlr−1(A,X), Xr) (36)

=

(
Xr swirlr−1(A,X) swirlr−1(A,X)
Xr swirlr−1(A,X)Xr swirlr−1(A,X)Xr

)
.

This implies

tr(swirlr(A,X)) = tr(Xr swirlr−1(A,X)) + tr(swirlr−1(A,X)Xr) (37)

= 2 tr(Xr swirlr−1(A,X)).

Now

Xr swirlr−1(A,X) =

(
0 Xr−1

Xr−1 0

)(
Xr−1 swirlr−2(A,X) swirlr−2(A,X)

Xr−1 swirlr−2(A,X)Xr−1 swirlr−2(A,X)Xr−1

)
(38)

=

(
swirlr−2(A,X)Xr−1 Xr−1 swirlr−2(A,X)Xr−1

swirlr−2(A,X) Xr−1 swirlr−2(A,X)

)
.

Thus

tr(Xr swirlr−1(A,X)) = tr(swirl(swirlr−2(A,X), Xr−1)) (39)

= tr(swirlr−1(A,X))

= 2r−1 tr(AX)

by induction.
Therefore,

tr(swirlr(A,X)) = 2r tr(AX). (40)

The result then follows by induction. �

Remark A.3 Alternatively, observe that, since X2 = I, swirl`(A,X) is just the block
matrix of swirl(A,X) repeated 4`−1 times. This means

tr(swirl`(A,X)) = 2`−1 tr(swirl(A,X)) = 2` tr(AX)

If we wish to study the moments of ensembles of such matrices, we need to understand
the trace of powers of the iterated swirl matrices. We reduce this to an analysis of
tr((AX)k) in the following proposition.

Proposition A.4 Fix A,X to be N × N matrices such that X2 = I and k and l non-
negative integers. Then

tr((swirl`(A,X))k) = 2k` tr((AX)k). (41)
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Proof. We prove by induction on `. For ` = 1, this follows from Theorem 3.5. Now,
assume

tr((swirl`(A,X))k) = 2k` tr((AX)k) (42)

holds for ` = r ≥ 1. We show it holds for ` = r + 1. By Definition A.1,

swirl`+1(A,X) = swirl(swirl`(A,X`), X`+1). (43)

So,

tr((swirl`+1(A,X))k) = tr((swirl(swirl`(A,X), X`+1))
k)

= 2k tr((swirl`(A,X)X`+1)
k)

with the last step following from Theorem 3.5.
Let B = swirl`−1(A,X). Then,

swirl`(A,X)X`+1 =

(
BX` B
X`BX` X`B

)(
0 X`

X` 0

)
(44)

=

(
BX` B
X`BX` X`B

)
= swirl`(A,X)

with the last step following from the assumption that X2 = I.
Therefore,

tr((swirl`+1(A,X))k) = 2k tr((swirl`(A,X)X`+1)
k)

= 2k tr((swirl`(A,X))k)

= 2k(`+1) tr((AX)k)

with the last step from the inductive hypothesis. The result then follows by induction. �

A.1 Limiting Spectral Distribution of Swirled Matrix Ensembles

From the previous work in this section, we can reduce the analysis of swirl matrix en-
sembles to the analysis of matrix product ensembles. We consider the empirical spectral
measure defined in Definition 2.2. In this case, from Remark A.3, for A and X both
N ×N matrices, and ` ≥ 1, swirl`(A,X) has the same number of eigenvalues that are not
trivially zero (non-repeated rows), c, as swirl`(A,X). Let BN2` = swirl`(A,X). Then the
empirical spectral measure of BN2` is given by

µA,N2`(x)dx :=
1

c

c∑
i=1

δ

(
x−
√
cλi(A)

N2l

)
dx. (45)

From Definition 2.2 and Proposition A.4, the kth moment of the spectral distribution in
this case is thus

2`kck/2−1

2`kNk+1
E[tr((AX)k)] =

ck/2−1

Nk+1
E[tr((AX)k)], (46)

which does not depend on `. As such, the limiting spectral distribution of swirl is the
same for any number of iterations, `.
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B The Product of Swirl and its Transpose

If we assume that X is a permutation matrix, then tr(swirl(A,X) swirl(A,X)T ) reduces
to understanding tr(AAT ). This is a useful quantity to understand if A and X are chosen
such that swirl(A,X) does not necessarily have real eigenvalues.

Proposition B.1 Fix A,X to be N ×N matrices with X a permutation matrix. Then

tr((swirl(A,X) swirl(A,X)T )k) = 22k tr((AAT )k). (47)

Proof. Let S = swirl(A,X) swirl(A,X)T . We show by induction that

Sk = 22k−1
(

(AAT )k (AAT )kXT

X(AAT )k X(AAT )kXT

)
. (48)

For the base case, consider Sk for k = 1. We have

S1 =

(
AX A
XAX XA

)(
(AX)T (XAX)T

AT (XA)T

)
. (49)

This yields

=

(
(AX)(AX)T + AAT (AX)(XAX)T + A(XA)T

(XAX)(AX)T + (XA)AT (XAX)(XAX)T + (XA)(XA)T

)
. (50)

Expanding the transpose terms yields

=

(
AXXTAT + AAT AXXTATXT + AATXT

XAXXTAT +XAAT XAXXTATXT +XAATXT

)
. (51)

Recall X is a permutation matrix XXT = I. Thus, we have

= 2

(
AAT AATXT

XAAT XAATXT

)
. (52)

Now assume that the inductive hypothesis holds for k = n; we will show it holds for
k = n+ 1. Rewrite Sn+1 as SSn. Then

Sn+1 = 2

(
AAT AATXT

XAAT XAATXT

)
22n−1

(
(AAT )n (AAT )nXT

X(AAT )n X(AAT )nXT

)
, (53)

by induction. Matrix multiplication yields

= 22n

(
(AAT )n+1 + (AAT )n+1 (AAT )n+1XT + (AAT )n+1 +XT

X(AAT )n+1 +X(AAT )n+1 X(AAT )n+1XT +X(AAT )n+1XT

)
. (54)

Simplifying, we have
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= 22n+1

(
(AAT )k+1 (AAT )k+1XT

X(AAT )k+1 X(AAT )k+1XT

)
. (55)

This completes the inductive argument.
Now calculating the trace is trivial. Note by the cyclic property of trace,

tr(Sk) = 22k−1 tr((AAT )k) + 22k−1 tr(X(AAT )kXT )) = 22k tr((AAT )k). (56)

�
Here the limiting spectral distribution reduces to a scaled semicircle distribution, which

is handled in [25].

C Generalizing Hankel Matrices

When computing the moments of the limiting empirical spectral measures of our ensem-
bles, we converted our problem of finding degrees of freedom of contributing summands
in the trace to a problem of calculating the nullity of a matrix. As a specific example,
we can calculate the nth moment of the Hankel ensemble by looking at set partitions of
{1, 2, . . . n} and calculating the rank of matrices of the form

Mπ = (In − Pπ)Bn(1, 1), (57)

where In is the identity matrix, Pπ is a permutation matrix, and Bn(s, t) is a matrix with
s in the diagonal and t to the right of the diagonal. The matrix B4(s, t) is written below
as an example.

B4(s, t) =


s t 0 0
0 s t 0
0 0 s t
t 0 0 s

 (58)

The permutation matrix Pπ corresponds to the particular matching of indices in the
summand corresponding to equal matrix entries. The nullity of the matrix Mπ gives
the degrees of freedom of assignments of entries to groups that contribute in the case π.
Iterating over all set partitions and substituting into the formula in Definition 2.4, we can
easily show certain configurations do not contribute in the limit.

We generalize by considering matrices which are constant along certain circulant diag-
onals. We call these (s, t)-ensembles. Formally, an N ×N matrix is in the (s, t)-ensemble
if

si+ tj ≡N sk + t` =⇒ aij = ak`. (59)

An example of a matrix within the (1,2)-ensemble is:

A4(1, 2) =


x1 x2 x3 x4
x3 x4 x1 x2
x1 x2 x3 x4
x3 x4 x1 x2

 (60)
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Note how the equivalent entries, denoted here by entries of the same value, are spaced
apart by s = 1 row movements and t = 2 column movements. This creates the appearance
of a matrix where every s rows, the entries are horizontally permuted by t columns. From
this, we obtain the idea of slope as we describe the relationship between equivalent entries
in (s, t)-ensemble patterns. This generalization is the idea of a polynomial link function
in the literature, except now modulo N (see [1, 5, 6, 20]).

However, this generalization is insufficient if we intend to study symmetric matrices.
Thus, we strengthen our condition to

aij = amn ⇐⇒ si+ tj ≡N sm+ tn or ti + sj ≡N tm + sn. (61)

This allows us to generalize the special behavior of both circulant Hankel and circulant
Toeplitz matrices.

Below we have a 4× 4 matrix that belonging to the (1, 1)-ensemble
x1 x2 x3 x4
x2 x3 x4 x1
x3 x4 x1 x2
x4 x1 x2 x3

 .
These represent the circulant Hankel matrices. Moreover, 4×4 matrices from the (1,−1)-
ensemble are of the form 

x1 x2 x3 x4
x4 x1 x2 x3
x3 x4 x1 x2
x2 x3 x4 x1

 .
These represent the circulant Toeplitz matrices.

Inspired by the fact that both the circulant Hankel and circulant Toeplitz matrices
admitted diagonal structure, we generalize this structure in the hopes of finding a broader
class of matrices with named limiting empirical spectral distributions. To this end, notice
how the elements of the aforementioned families cascade through the matrix with “slope”
±1. It is this notion of slope which we wish to generalize, and will be made more concrete
in what follows.

With this change in parameters, the same pattern of equivalent entries being s rows and
t columns away persists, and the main observable change is in the number of equivalence
classes of matrix entries that appear.

The elements at the indices generated by (s, t) and (t, s) form a group:

H = 〈(s, t), (t, s)〉 ≤ (Z/NZ)× (Z/NZ). (62)

Notice that H is a normal subgroup of (Z/NZ)×(Z/NZ). We want to understand the
number of cosets associated to ((Z/NZ)× (Z/NZ))/H, as this will give us the number of
unique elements within an N ×N matrix with the aforementioned rule.

In the simplest cases we get the matrices we studied in the main portion of the paper.
When s and t both equal 1, the resultant ensemble is Hankel, with the number of cosets

the pump journal of undergraduate research 5 (2022), 122–147 143



increasing as N increases. It is this positive slope that reflects the symmetry of the matrix
that is lacking in the circulant Toeplitz. Likewise, if s and t are units with opposite signs,
i.e., s = 1 and t = −1, the resulting matrices are all Toeplitz. Similarly, the number
of cosets increases consistently with N . The number of cosets is important to consider
because it indicates the amount of variation within the matrix, the more cosets there are,
the fewer zero eigenvalues appear.

Now, as we vary s and t, new patterns arise in the family of matrices and consequently
the number of cosets. This variance is a function of the positioning of equivalent entries.
With these new s and t values, the spacing between the placement of the entries changes,
and there are some very interesting patterns to the numbers of cosets and the qualities of
symmetry. However, among all these patterns, it appears that the only ones that remain
symmetric are circulant Hankel. Besides those, we continue to observe circulant Toeplitz
matrices appearing at certain intervals and numbers of cosets.

For N coprime to s and t, we observe that when

s ≡ t (mod [H : (Z/NZ)× (Z/NZ)]), (63)

where [H : (Z/NZ) × (Z/NZ)] is the index of H in (Z/NZ) × (Z/NZ), the matrices
yielded are circulant Toeplitz. Alternatively, when

s ≡ −t (mod [H : (Z/NZ)× (Z/NZ)]) (64)

the matrices yielded are circulant Hankel.
However, we found that whenever we consider N×N matrices from the (s, t)-ensemble

with s, t 6= ±1, then the limiting spectral distribution is uninteresting. This is because
the number of cosets for a matrix in this ensemble appears bounded by a constant times
gcd((s+t)(s−t), N). Indeed, the matrix becomes a block matrix with many repetitions of
a much smaller matrix, deferring its spectral distribution to that smaller matrix ensemble.
When s and t are units (up to sign), we find computationally that the number of cosets is
proportional to gcd(0, N), which is just N . Because the number of cosets is proportional
to N , the number of eigenvalues grows as we increase the size of the matrix. However, in
the other case, the number of nonzero eigenvalues is fixed, preventing a new distribution
from arising.
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