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Abstract - Benford’s law of digit bias states that in many data sets it is more likely to
see lower leading digits than larger; determining why this is the case is one of the most
important problems in the subject. Earlier work determined why exponential and more
generally Weibull distributions are close to Benford’s law. These two families are special
cases of a more general distribution, the generalized gamma distribution, which we prove is
often close to Benford’s law.
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1 Introduction and an Overview of the Theory

At the dawn of the 20th century, the astronomer and mathematician Simon Newcomb
observed that the logarithmic books at his workplace showed a lot of wear and tear at
the early pages, but the more he progressed through the book, the less usage could be
observed. He deduced that his colleagues had a “bias” towards numbers starting with the
digit 1. In particular, the digit 1 was the leading digit roughly 30% of the time, the digit
2 about 18% of the time, and so on. While he did come up with a mathematical model
for this interesting relationship, his work stayed mostly unnoticed.

It took another 57 years after Newcomb’s discovery for physicist Frank Benford to
observe the same bias in many settings. He formulated a law describing this phenomenon,
called Benford’s law in his honor, as follows.

Definition 1.1 [2] The frequency of first digits follows closely the logarithmic relation:

FD = log10

D + 1

D
,

where D represents the leading digit, and FD represents the frequency of the digit D.
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In addition to being of theoretical interest, Benford’s law has applications in detecting
fraud, and arises in numerous disciplines; see for example [3, 16, 11].

Many mathematicians have tried to explain the prevalence of Benford’s law in the real
world. Some have shown that data sets coming from certain probability distributions tend
to satisfy Benford’s law, and explained the phenomenon mathematically [4, 14]. We adopt
the same methodology as used in the aforementioned work to demonstrate and explain the
phenomenon that data sets coming from a generalized gamma distribution usually satisfy
Benford’s law. As the exponential distribution and the Weibull distribution explored in
[4, 14] are special cases of the generalized gamma distribution, our results incorporate the
results obtained in the earlier research as special cases.

1.1 Benford’s law

To begin with, we define Benfordness and restate Benford’s law in a self-contained manner.

Definition 1.2 A set of numbers is said to satisfy Benford’s law if the leading digit
D ∈ {1, 2, . . . , , B − 1} occurs with frequency FD = logB

D + 1
D

, where B ≥ 2.
A random variable X or its distribution is said to demonstrate Benfordness if data

sets of its realizations satisfy Benford’s law.

Remark 1.3 Any positive x can be written in scientific notation as SB(x) · 10k with the
significand SB(x) ∈ [1, B) and k an integer. A more general version of the law describes
the frequencies of different second digits, third digits and so on. One could also give an
expression for the probability of a digit occurring in the n-th digit of a number, as is
described in the first chapter of [11]. This is related to the Strong Benford’s law, which
states that the probability of observing a significand of at most s in base B is equal to
logB s. In an abuse of notation, the distribution of just the leading digit, as well as the
distribution of the entire significand, is often referred to as just Benford’s law.

Remark 1.4 For any finite data set, it is impossible for the leading digit frequencies of a
data set to equal the theoretical quantities given by the law exactly (as these probabilities
are irrational). As long as they are close, and are expected to converge as the size of
the sample tends to infinity, we will still say the data set satisfies Benford’s law, and the
distribution used to model the data set demonstrates Benfordness.

One also studies the mantissa, which is the fractional part of the logarithm.

Example 1.5 As an example, let x = 31295192. When we write this in scientific nota-
tion using base 10, it becomes x = 3.1295192·107 and it follows that SB(3.1295192·107) =
3.1295192 is the significand, and 7 is the exponent. Furthermore, since log10 31295192 ≈
7.495477620349604, the mantissa is about 0.495477620349604.

We now formally introduce what it means for a random variable to have a Benford
distribution.
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Definition 1.6 Given B ≥ 2, a random variable X has a Benford distribution with base
B if Prob (X ≤ x) = logB x, where x ∈ [1, B).

If a random variable X has a Benford distribution, then clearly it will demonstrate
Benfordness. But random variables with other distributions could also demonstrate Ben-
fordness. Let X : Ω → R, be a random variable with cumulative distribution function
(cdf) F . If SB ◦X has a Benford distribution with base B, then one would expect a data
set of realizations of X to satisfy Benford’s law since

Prob (X has leading digit D) = Prob (SB ◦X ∈ [D,D + 1)) = logB
D + 1

D
,

which is just a direct application of Definition 1.6.
To determine whether a random variable X demonstrates Benfordness or not, we

could find the distribution of SB ◦X directly and compare it to the Benford distribution.
Alternatively, the following theorem, which can be found in [5], provides another method,
which in some cases is more convenient to use.

Theorem 1.7 Given a base B ≥ 2 and a positive random variable X, SB ◦ X has a
Benford distribution with base B if and only if logBX mod 1 has a uniform distribution
on [0, 1).

Proof. For any s ∈ [1, B), let u = logB s ∈ [0, 1). Let us assume that SB ◦ X has a
Benford distribution with base B, then the following holds:

Prob (logBX mod 1 ∈ [0, u)) = Prob
(
{X ∈ [1 ·Bk, s ·Bk) : k ∈ Z}

)
= Prob (SB ◦X ∈ [1, s))

= logB s

= u.

Hence it follows that logBX mod 1 has a uniform distribution on [0, 1).
For the other direction, let us now assume that logBX mod 1 has a uniform distribution
on [0, 1). Then

Prob (SB ◦X ∈ [1, s)) = Prob
(
{X ∈ [1 ·Bk, s ·Bk) : k ∈ Z}

)
= Prob (logBX mod 1 ∈ [0, u))

= u

= logB s,

which means SB ◦X has a Benford distribution with base B. �
Theorem 1.7 forms the key foundation of our work. Tto show a positive random

variable X demonstrates Benfordness, instead of dealing with SB ◦ X, we focus on
logBX mod 1 and prove it has (or is close to) a uniform distribution on [0, 1).

Theorem 1.7 also enables us to measure the deviation of a random variable from
Benfordness. Assume X and Y are positive random variables and SB ◦ Y has a Benford
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distribution with baseB. We now transform the random variableX via the transformation
noted in Theorem 1.7 to logBX mod 1, and denote its probability density function (pdf)
as: flogB X mod 1. For any digit D ∈ {1, 2, . . . , B−1}, the deviation of X from Benfordness
is defined and given by

Dev(D) =

∣∣∣∣Prob (X has leading digit D)− logB
D + 1

D

∣∣∣∣
= |Prob (SB ◦X ∈ [D,D + 1))− Prob (SB ◦ Y ∈ [D,D + 1)) |
= |Prob

(
{X ∈ [D ·Bk, (D + 1) ·Bk) : k ∈ Z}

)
−

Prob
(
{Y ∈ [D ·Bk, (D + 1) ·Bk) : k ∈ Z}

)
|

= |Prob (logBX mod 1 ∈ [logBD, logBD + 1))−
Prob (logB Y mod 1 ∈ [logBD, logBD + 1)) |

=

∣∣∣∣∫ logB D+1

logB D

flogB X mod 1(u)− 1 du

∣∣∣∣
≤

∫ 1

0

∣∣flogB X mod 1(u)− 1
∣∣ du. (1)

Notice that the expression in the last line above no longer depends on D, so it could
be used as a general bound for X’s deviation from Benfordness. Equation 1 will be used
later in the numerical simulation of the probability density function of logBX mod 1. In
the next subsection, we present a quick theoretical overview of the generalized gamma
distribution.

1.2 The Generalized Gamma Distribution and Its Benfordness

The work done by Miller and Nigrini in [14], as well as the paper by Leemis, Schmeiser,
and Evans [10], explored the exponential distribution and how it relates to Benford’s law,
whereas Cuff et.al in [4] explored a similar form of a relationship between the Weibull
distribution and Benford’s law. Their works demonstrated and explained the phenomenon
that data sets coming from these distributions usually are close to Benford’s law. Both
of these distributions can be seen as “children” of one parent distribution for a particular
choice of parameters, which is the generalized gamma distribution.

For the purposes of this paper, we use the following definition of the generalized gamma
distribution, as presented in [20].

Definition 1.8 A random variable X has a generalized gamma distribution with param-
eters a, d, and p if its cumulative distribution function is of the form

F (x; a, d, p) =
γ
(
d
p
,
(
x
a

)p)
Γ
(
d
p

) , x > 0; a, d, p > 0, (2)

where γ is the lower incomplete gamma function, defined as

γ(s, x) :=

∫ x

0

ts−1e−tdt.
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The corresponding probability density function is

f(x; a, d, p) =

(
p
ad

)
xd−1e−(x/a)

p

Γ
(
d
p

) .

One can gain a lot of intuition for the behavior of the distribution by analyzing the
graph of the probability density function for different parameters. In particular, we point
out that the parameters d and p determine the shape of the probability density function,
while the parameter a determines the spread of the probability density function.

We note that, when d = p, equation (2) is just the cumulative distribution function
of a Weibull distribution, and that is further reduced to the exponential distribution for
the special case of d = p = 1. This is a very useful observation because it enables us
to directly relate and compare our results to the results obtained in [4, 14].

Our main results are the following, which we prove in Section 2.

Theorem 1.9 If X is a random variable having a generalized gamma distribution with
parameters a, d, p, then the probability density function of logBX mod 1 is

flogB X mod 1(u) =
p lnB

Γ
(
d
p

) ∞∑
k=−∞

e
−
(
Bk+u

a

)p (Bk+u

a

)d
, (3)

or

flogB X mod 1(u) = 1 +
∞∑
k=1

2

Γ
(
d
p

) Re

[
e−2πik(u−

ln a
lnB )Γ

(
d

p
+

2πki

p lnB

)]
, (4)

where u ∈ (0, 1). Further, the behavior of the probability density function is mainly
determined by parameters d and p, for any m ∈ Z, a and a · Bm result in the same
probability density function.

Theorem 1.10 Let

fMlogB X mod 1(u) = 1 +
M∑
k=1

2

Γ
(
d
p

) Re

[
e−2πik(u−

ln a
lnB )Γ

(
d

p
+

2πki

p lnB

)]

be the first M-term (plus the main term 1) partial sum approximation of flogB X mod 1(u)
in equation (4). For any ε > 0, if

M >
(d+ p)2(ln(B))2

2π2ε
− 1, (5)

then supu∈(0,1) |flogB X mod 1(u)−fMlogB X mod 1(u)| ≤ ε, i.e., we could make the approximation
error arbitrarily small by keeping more terms in the partial sum.
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In our proof of Theorem 1.9 in the next section, we adopt the same method used by
Cuff et.al in [4]. To get equation (4) from equation (3), we need the following result.

Lemma 1.11 (Poisson summation formula1) Let f , f ′ and f ′′ be continuous func-
tions which eventually decay at least as fast as x−(1+η) for some η > 0, then

∞∑
n=−∞

f(n) =
∞∑

n=−∞

f̂(n),

where f̂(y) =
∫∞
−∞ f(x)e−2πxyidx is the Fourier transformation of f .

Before giving the proofs, we present some simulations that show the Benfordness of
the generalized gamma distribution.

Figure 1: Leading digit frequencies of 10000 samples from a generalized gamma distribu-
tion (B = 10, a = 2, d = 1, p = 1/2) .

Figure 1 compares the leading digit frequencies of 10, 000 samples from a generalized
gamma distribution with parameters B = 10, a = 2, d = 1, and p = 1/2, with the
frequencies predicted by Benford’s law. Observe that Benford’s law is an excellent fit.

1The conditions here are not the weakest needed for the result, but suffice for our purposes.
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The Benfordness of the generalized gamma distriubtion can also be demonstrated in
another way. Theorem 1.7 guarantees that a positive random variable X demonstrates
Benfordness if and only if logBX mod 1 is approximately uniformly distributed over [0, 1).
So we could test the Benfordness of a generalized gamma distributed random variable X
by inspecting if the distribution of logBX mod 1 is close to a uniform distribution over
[0, 1). This can be done through a Kolmogorov-Smirnov test, which could be used to
examine whether a given sample comes from a specific distribution. The smaller the test
statistic is, the more likely the sample came from the target distribution. We generated
data sets from the generalized gamma distribution with different values of parameters d
and p, and performed the Kolmogorov-Smirnov tests to compare the transformed data
(logBX mod 1) with the uniform distribution on [0, 1). The result is shown in Figure 2.
Observe that the test statistics are small in general, indicating the transformed data
came from populations with an approximate uniform distribution over [0, 1), and hence
the original distributions should demonstrate Benfordness.

Figure 2: Kolmogorov-Smirnov test results under different values of d and p (a = 1).

Given the huge amount of possible combinations of the three parameters of a gen-
eralized gamma distribution, it’s unrealistic to expect Benfordness to be demonstrated
under any given set of parameters. From our experimental experience, the generalized
gamma distribution demonstrates very good Benfordness when parameters d and p are
small. This could be see in Figure 2.
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2 Main Results and Key Observations

Below we prove Theorems 1.9 and 1.10, and justify the observations shown in Figures 1
and 2.
Proof. [Proof of Theorem 1.9] Given u ∈ [0, 1), we have

Prob(logBX mod 1 ∈ [0, u]) =
∞∑

k=−∞

Prob(logBX ∈ [k, k + u])

=
∞∑

k=−∞

Prob(X ∈ [Bk, Bk+u])

=
1

Γ
(
d
p

) ∞∑
k=−∞

∫ (
Bk+u

a

)p
(
Bk

a

)p t
d
p
−1e−tdt, (6)

which is the culmulative distribution function of logBX mod 1. To get the probability
density function of logBX mod 1, we differentiate the above with respect to u, obtaining

flogB X mod 1(u) =
d

du
Prob(logBX mod 1 ∈ [0, u])

=
1

Γ
(
d
p

) d

du

∞∑
k=−∞

∫ (
Bk+u

a

)p
(
Bk

a

)p t
d
p
−1e−tdt

=
1

Γ
(
d
p

) ∞∑
k=−∞

d

du

∫ (
Bk+u

a

)p
(
Bk

a

)p t
d
p
−1e−tdt, (7)

where u ∈ (0, 1). The justification for doing term-by-term differentiation in the preced-
ing deduction is the presence of e−t term in the integral, which guarantees the uniform
convergence of the infinite sum and its derivative over (0, 1).

We now continue to work with the integral from (7). Using the Fundamental Theorem
of Calculus we find

d

du

∫ (
Bk+u

a

)p
(
Bk

a

)p t
d
p
−1e−tdt = e

−
(
Bk+u

a

)p ((Bk+u

a

)p) d
p
−1

p

(
Bk+u

a

)p−1
Bk+u lnB

a

= e
−
(
Bk+u

a

)p (Bk+u

a

)d
p lnB, (8)

and then substituting (8) into (7), we derive that the probability density function of
logBX mod 1 is

flogB X mod 1(u) =
p lnB

Γ
(
d
p

) ∞∑
k=−∞

e
−
(
Bk+u

a

)p (Bk+u

a

)d
.
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Next we apply the Poisson summation formula in Lemma 1.11 to the above result to
get the equivalent form (4), which is better since it is divided into a main term, 1, which
is what we want as it’s the probability density function of a uniform distribution on [0, 1),
and a residue term given by an infinite series.

For any u ∈ (0, 1), let z = Bu, t = k. It’s easy to check that

g(t) = p ln(B)e
−
(
Btz
a

)p (Btz

a

)d
satisfies the conditions for applying Poisson summation formula. To apply the formula,
we first compute the Fourier transform of this function:

ĝ(f) =

∫ ∞
−∞

p lnBe
−
(
Btz
a

)p (Btz

a

)d
e−2πitfdt

=

∫ ∞
0

e−ωω
d
p
−1

(
aω

1
p

z

)− 2πif
lnB

dω , where ω =

(
Btz

a

)p
=

(z
a

) 2πif
lnB

Γ

(
d

p
− 2πif

p lnB

)
.

Now we use the above result to apply Poisson summation to equation (3), which yields
equation (4).

flogB X mod 1(u) =
1

Γ
(
d
p

) ∞∑
k=−∞

g(k)

=
1

Γ
(
d
p

) ∞∑
k=−∞

ĝ(k)

=
1

Γ
(
d
p

) ∞∑
k=−∞

(z
a

) 2πik
lnB

Γ

(
d

p
− 2πik

p lnB

)

= 1 +
1

Γ
(
d
p

) ∞∑
k=1

[(z
a

) 2πik
lnB

Γ

(
d

p
− 2πik

p lnB

)
+

(z
a

)− 2πik
lnB

Γ

(
d

p
+

2πik

p lnB

)]
= 1 +

∞∑
k=1

2

Γ
(
d
p

) Re

[(z
a

)− 2πik
lnB

Γ

(
d

p
+

2πki

p lnB

)]

= 1 +
∞∑
k=1

2

Γ
(
d
p

) Re

[
e−2πik(u−

ln a
lnB )Γ

(
d

p
+

2πki

p lnB

)]
, (9)

where for the second last equality, we used the property Γ (z) = Γ (z).
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Finally, observe that e2πix = e2πi(x+1) for all x ∈ R, which verifies that for any m ∈ Z,
a and a ·Bm result in the same probability density function. �

Remark 2.1 When reducing the results from equation (4) to the Weibull case, we retrieve
the same result that was shown in the article by Cuff et.al [4].

We now turn to estimating the value of the probability density function.

Proof. [Proof of Theorem 1.10] For any M ≥ 1, u ∈ (0, 1), the approximation error is

|η| = |flogB X mod 1(u)− fMlogB X mod 1(u)|

=

∣∣∣∣∣∣
∞∑

k=M+1

2

Γ
(
d
p

) Re

[
e−2πik(u−

ln a
lnB )Γ

(
d

p
+

2πki

p lnB

)]∣∣∣∣∣∣
≤

∞∑
k=M+1

2

Γ
(
d
p

) ∣∣∣∣Γ(dp +
2πki

p lnB

)∣∣∣∣ . (10)

The gamma function has the property that2

|Γ(a+ bi)|2 = |Γ(a)|2
∞∏
k=0

(a+ k)2

(a+ k)2 + b2
,

and applying this to (10), we get∣∣∣∣Γ(dp +
2πki

p lnB

)
)

∣∣∣∣2 =

[
Γ

(
d

p

)]2 ∞∏
l=0

1

1 + (2πk)2 / [(d+ pl) lnB]2

≤
[
Γ

(
d

p

)]2 1∏
l=0

1

1 + (2πk)2 / [(d+ pl) lnB]2

≤
[
Γ

(
d

p

)]2
[(d+ p) lnB]4

(2πk)4
,

where the first inequality holds because all terms in the product are positive numbers less
than or equal to 1. Finally we have

|η| ≤
∞∑

k=M+1

[(d+ p) lnB]2

2π2k2

≤
∫ ∞
M+1

[(d+ p) lnB]2

2π2x2
dx

=
[(d+ p) lnB]2

2π2(M + 1)
. (11)

2This could be found in many mathematical handbooks like [1].
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Letting |η| < ε, and using the result from (11), we obtain the lower bound for M as
given in (5). �

With the help Theorem 1.10, for a random variable having a generalized gamma
distribution with parameters (a, d, p), we could further decompose and bound its deviation
from Benfordness Dev(D) for any digit D, which is given in (1), as:

Dev(D) =

∣∣∣∣P (X has leading digit D)− logB
D + 1

D

∣∣∣∣
≤

∫ 1

0

|f(u)− 1|du

≤
∫ 1

0

|f(u)− fM(u)|du+

∫ 1

0

|fM(u)− 1|du

≤ ε+ sup
u∈(0,1)

|fM(u)− 1|, (12)

where f and fM are exact and approximate probability density functions of logBX mod 1.
Since we can control ε (which then determines M), and supu∈(0,1) |fM(u) − 1| can be
evaluated (at least) numerically, we can get an upper bound for the deviation of SB ◦X
from the Benford distribution for any given parameters a, d and p.

Figure 3 shows the graphs of some approximate probability density functions (with
approximation error ε < 0.01) of logBX mod 1 with different parameters. We could see all
curves only deviate slightly from the constant 1, which indicates these probability density
functions are pretty close to the probability denisty function of a uniform distribution
over (0, 1). We could also see in Figure 3 the scaling invariance property of parameter a.

Figure 4 shows the upper bound of the deviation of a generalized gamma distribution
from Benfordness with respect to d and p according to (12). We can see the deviation is
small when the parameters d and p are small, but increases as the parameters increase.
This is consistent with the result of Kolmogorov-Smirnov test in Figure 2.

3 Conclusion and Future Work

We have shown the Benfordness of the generalized gamma distribution under suitable
choices of parameters. When d and p are small, data sets coming from a generalized
gamma distribution tend to satisfy Benford’s law. It would be interesting to see this result
being used in practice. For example, when p = 1, the generalized gamma distribution is
reduced to a gamma distribution with parameters α = d, β = 1/a, which is wildly used
to model real-world data sets, such as the size of insurance claims. For these applications,
when the parameter d of the model is small, some data checking methods could be designed
accordingly based on Benford’s law.

A natural future research avenue is to perform a similar analysis for other families of
distributions, in particular dealing with the challenges that arise if the random variables
are discrete.
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Figure 3: Approximation of probability density functions of logBX mod 1 with different
parameters.

Figure 4: Left: Bound of probability difference (12) with respect to d (a = 1, p = 0.5);
Right: Bound of probability difference (12) with respect to p (a = 1, d = 0.5).
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Appendix A Simulation Code

R script: Sample from a Generalized Gamma Distribution and compare the
first-digit frequencies of the data with values predicted by Benford’s law

#source("ggamma.R")

N=10000

a = 2

d = 1

p = 1/2

B <- 10 # B should be an integer greater than 1

#sample <- rggamma(N, a, d, p)

sample <- as.vector(qgamma(runif(N), shape = d/p, scale = a^p)^(1/p))

for (i in 1:N) {

while (sample[i] < 1 | sample[i] >= B) {

if (sample[i] < 1) {

sample[i] <- sample[i] * B

} else {

sample[i] <- sample[i] / B

}

}

sample[i] <- trunc(sample[i])

}

freqs <- as.numeric(table(sample))

error <- 0.0

freqs_t <- vector("list", B - 1)

freqs_t <- unlist(freqs_t)

for (i in 1:(B-1)) {

freqs_t[i] <- logb((i + 1) / i, base=B)

error <- error + (freqs[i] / N - freqs_t[i])^2

}

freqs <- freqs / N

d <- 1:(B-1)

plot(d, freqs_t, las=1, xlab="Digit", ylab="Frequency", col="green", xaxt="n",

pch=19, cex=1.2)

axis(1, at=1:(B-1), labels=1:(B-1))

points(d, freqs, col="red", pch=3, cex=1.2)

legend(B - 3, max(c(freqs, freqs_t)) * 0.98, legend=c("theory", "experiment"),

col=c("green", "red"), pch=c(19, 3), cex=1.2)
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Maple code: Plot probability density functions and calculate probability de-
viation bound

restart;

with(plots):

g_k:=2/GAMMA(d/p)*GAMMA(d/p+2*Pi*I*k/p/ln(B))*exp(-2*Pi*I*u * k + k * 2*Pi*I*ln

(a)/ln(B));

f_M := 1 + sum(Re(g_k), k=1..M);

M := ceil(((d + p)*ln(B))^2/2/Pi/Pi/e - 1);

# set pointwise error bound

e := 0.01;

# set parameters and plot

B:=10; a:=1; d:=1/2; p:=1/2;

p1 := plot(f_M, u=0..1, color="red", thickness = 3, labels=[u, f], legend="a =

1, d = p = 1/2", labeldirections = ["horizontal", "vertical"]):

B:=10; a:=10; d:=1/2; p:=1/2;

p2 := plot(f_M, u=0..1, color="purple", thickness = 3, labels=[u, f], legend="a

= 10, d = p = 1/2", labeldirections = ["horizontal", "vertical"]):

B:=10; a:=1; d:=1; p:=1/2;

p3 := plot(f_M, u=0..1, color="green", thickness = 3, labels=[u, f], legend="a

= 1, d = 1, p = 1/2", labeldirections = ["horizontal", "vertical"]):

B:=10; a:=1; d:=1/2; p:=1;

p4 := plot(f_M, u=0..1, color="blue", thickness = 3, labels=[u, f], legend="a =

1, d = 1/2, p = 1", labeldirections = ["horizontal", "vertical"]):

display(p1, p2, p3, p4, legendstyle = [font=["HELVETICA", 12], location=bottom

]);

# calculate bounds for probability difference under different parameters

# d = p = 0.5, a changes from 1 to 10

# unassign(’a’); d := 0.5; p := 0.5;

# points:={seq([a, Optimization[Maximize](abs(f_M - 1),u = 0..1)[1] + e], a

=1..10)};

# pointplot(points, symbol=solidcircle, symbolsize = 15, color=orange, labels

=["a", "Bound for Probability Difference"], labeldirections=["horizontal",

"vertical"]);

# a = 1, p = 0.5, d changes from 0.1 to 2

unassign(’d’); a := 1; p := 0.5;
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ds := seq(n/10, n=1..20);

points:={seq([d, Optimization[Maximize](abs(f_M - 1),u = 0..1)[1] + e], d=ds)};

pointplot(points, symbol=solidcircle, symbolsize = 15, color=blue, labels=[d, "

Bound for Probability Difference"], labeldirections=["horizontal", "

vertical"]);

# a = 1, d = 0.5, p changes from 0.1 to 2

unassign(’p’); a := 1; d := 0.5;

ps := seq(n/10, n=1..20);

points:={seq([p, Optimization[Maximize](abs(f_M - 1),u = 0..1)[1] + e], p=ps)};

pointplot(points, symbol=solidcircle, symbolsize = 15, color=red, labels=[p, "

Bound for Probability Difference"], labeldirections=["horizontal", "

vertical"]);

Mathematica code for the Kolmogorov-Smirnov test

Clear[Diff]

Diff[a_,d_,p_,B_]:=KolmogorovSmirnovTest[Mod[Log[B,RandomVariate[

GammaDistribution[d,a,p,0],10^4]],1],UniformDistribution[],"TestStatistic"]

ContourPlot[Diff[1,d,p,10],{d,0.2,2},{p,0.2,2}, FrameLabel->Automatic,

PlotLegends->Automatic]
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