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Abstract - We investigate the combinatorial objects, mountains of spheres, which are three-
dimensional variants of two-dimensional fountains of coins. A mountain can be decomposed
into a sequence of fountains, and this decomposition leads to a recurrence relation. We
obtain a closed-form solution for their counts, based on this recurrence relation. Lastly, we
discuss the feasibility of this enumeration.
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1 Introduction

A common problem in combinatorics is to enumerate the ways to piece together physical
or mathematical objects that are subject to certain rules. For example, a polyomino is
a collection of unit squares in a square lattice subject to the rule that the squares must
be edge-wise connected, i.e., for any pair of squares in the polyomino there is a step-by-
step path of squares totally within the polyomino, beginning and ending at the pair, that
share an edge from one step to the next. Martin Gardner in his columns in Scientific
American popularized polyominoes in the 1960’s [3]. The literature about them is vast,
but popular overviews can be found in [4] and [6]. Figure 1 displays four polyominoes.
There are several ways to consider polyominoes equivalent, by translation, rotation, and
reflection, to name a few. Despite tremendous effort, closed-form formulas for the number
of polyominoes in terms of their number of squares are not known [10].

Figure 1: Polyominoes in a square lattice
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Figure 2: A fountain of coins of width 8 and the same fountain with its slant representation
〈1, 2, 3, 2, 1, 2, 3, 4〉, embedded in a coordinate system of rows and positions.

Another interesting combinatorial object is a fountain of coins. An (n,w) fountain
of coins is an arrangement of n identical coins subject to two rules: the bottom row
must consist of w contiguous coins, and the coins in higher rows must satisfy the gravity
rule that each coin has to rest on two coins in the row immediately below. The number
of coins in the bottom row of a fountain is called its width. Figure 2 shows an (18, 8)
fountain of width 8, consisting of 18 total coins. Odlyzko and Wilf analyzed fountains of
coins in [7] and attributed the question of their enumeration to J.M. Propp. They noted
that the number of fountains with exactly w coins in the bottom row coincides with the
wth Catalan number, which we denote Cw =

(
2w
w

)
/(w + 1) ≈ 4w/w3/2

√
π (see [8]). More

significantly, they showed that if an denotes the number of fountains with n total coins,
then the generating function f(x) =

∑
n anx

n is the continued fraction

f(x) =
1

1−
x

1−
x2

1−
x3

1− · · ·

. (1)

This continued fraction was first studied by S. Ramanujan, and an identity in his “lost
notebook” [1] provided a direct method in [7] to approximate the coefficients of this
generating function.

The combinatorial objects of interest in this paper are mountains of spheres, which
are three-dimensional variants of fountains of coins. Mountains of spheres were first intro-
duced by Endicott et al. in [2]. As defined there, an (n,w, `) mountain is an arrangement
of n identical spheres into a three-dimensional lattice that follows two rules: its bottom
layer forms a w × ` rectangular grid of spheres, and higher layers follow the gravity rule
that every sphere must rest on four spheres in the layer immediately below. Figure 3
shows a (153, 9, 10) mountain. In general, a mountain can have many peaks, valleys, and
plateaus. The spheres in each horizontal layer of a mountain must follow the gravity
rule, but are otherwise arbitrary and resemble collections of polyominoes. In [2], Endicott
analyzed special classes of mountains, such as pyramidal mountains which have a single
spire consisting of rectangular cross sections. Here, we consider general mountains and
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Figure 3: A (153, 9, 10) mountain, colored by horizontal layers

enumerate them in three ways:

mn,w,` = the number of mountains consisting of n spheres with a w × ` base;

mw,` =
∑
n

mn,w,` = the number of mountains with a w × ` base;

mn =
∑
w,`

mn,w,` = the number of mountains consisting of n spheres.

Rotations and reflections in general produce different mountains but with the same num-
ber of spheres. So, mw,` = m`,w.

The goal of this paper is to generalize the results of [7] from two-dimensional foun-
tains to three-dimensional mountains, and in doing so, answer open questions about the
enumeration of mountains from [2]. In Section 2, we review basic results about fountains
of coins, as they apply to mountains. Then, in Section 3, we show how a mountain can be
sliced face-by-face into fountains, how these faces must be related, and how this relation
leads to a linear recurrence relation for mn,w,`. We then use this recurrence relation to
obtain a closed-form formula for mw,` in terms of the powers of a matrix. We conclude
in Section 4 with remarks on the computational complexity of this solution and mention
several open problems about mountain counting.

2 Fountains

Recall that a fountain is an arrangement of identical coins into rows that has a contiguous
bottom row and satisfies the two-dimensional gravity rule. More formally, we can also
represent a fountain as a collection of ordered pairs of positive integers as follows. Each
coin in a fountain is uniquely identified by the row r that it is in and its position k within
this row, i.e., by the pair (r, k). Figure 2 illustrates the coordinate system of rows and
positions. Note that the position of a coin in one row is the same as the position of the
coin to its right in the row below. So, as an alternate definition in terms of integers, we
can say that F ⊆ N × N is a (n,w) fountain if |F | = n, the bottom row has (1, k) ∈ F
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for 1 ≤ k ≤ w and (1, k) /∈ F for any other k, and for the gravity rule that if r > 1 and
(r, k) ∈ F , then (r − 1, k − 1) and (r − 1, k) are also in F .

Though it may be tempting to consider fountains row by row, it often is more fruitful
instead to slice them diagonally into slants, as illustrated with different colors in Figure 2.
We say the kth slant of a fountain is the set of all coins with constant position k in the
rows. A fountain of width w has w coins on its bottom row and so has w slants, all of
which have at least one coin. By the gravity rule, we can see that a slant has no “gaps”—if
one coin is present in a slant, then it must be supported by a strip of coins beneath it
in its slant. Because of this, any fountain of width w may be expressed completely as
a w-tuple of the numbers of coins on its slants as in Figure 2. Notationally, we define
F = 〈s1, . . . , sw〉 to be the fountain with sk coins on the kth slant for 1 ≤ k ≤ w. Then,
|F | =

∑
k sk is the total number of coins in the fountain.

This representation of a fountain as a sequence of integers is much simpler than keeping
track of the location of each coin in the fountain individually. In this light, we would like
to know exactly when a sequence of positive integers 〈s1, . . . , sw〉 actually represents a
valid fountain. The leftmost slant s1 must be exactly 1 because there are no coins to the
left of the beginning of any fountain. The highest coin in the kth slant has coordinates
(sk, k) and, as long as sk > 1, by the gravity rule must be supported by the coin below
and to the left, which has coordinates (sk− 1, k− 1). Therefore, the number coins sk−1 in
the k − 1th slant must be at least sk − 1. So, a sequence 〈s1, . . . , sw〉 of positive integers
represents a fountain if and only if

s1 = 1

sk−1 ≥ sk − 1 for 1 < k ≤ w.
(2)

In other words, the first slant must be exactly 1 and each slant must properly “lean on”
the previous slant to the left. Sequences satisfying Equation 2 are one of the sixty six
incarnations of combinatorial objects in [11] (example U, page 224) giving rise to the
Catalan numbers.

Another advantage of the slant representation is that fountains can be ordered, in
particular, with the dictionary order. For instance, = 〈1, 1, 2〉 precedes = 〈1, 2, 1〉
in the dictionary order.

Perhaps the most important use for this slant representation is that it provides a recur-
sive method for building fountains. For this recursion, we define the following refinements
of types of fountains:

fn,w,s = the number of (n,w) fountains with s coins on the rightmost slant

fw,s =
∑
n

fn,w,s

= the number of fountains of width w with s coins on the rightmost slant

fw =
∑
s

fw,s = the number of fountains of width w
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Any fountain can be extended in width by tacking a slant of coins onto the rightmost
slant, as limited by Equation 2. Therefore,

fn,1,s =

{
1 if n = s = 1

0 otherwise

fn,w,s =
∑

s′≥s−1

fn−s,w−1,s′ for n ≥ s, w > 1, s ≥ 1.
(3)

It is easy to compute fw,s by summing over n and to compute fw by summing over s in
Equation 3, as seen in the table.

fw,s s = 1 2 3 4 5 6 fw =
∑

s fw,s

w = 1 1 0 0 0 0 0 1
2 1 1 0 0 0 0 2
3 2 2 1 0 0 0 5
4 5 5 3 1 0 0 14
5 14 14 9 4 1 0 42
6 42 42 28 14 5 1 132

The recurrence relation and values for fw,s coincide with that of a transpose of the so-
called Catalan triangle, C(n, k) in Equation 2.1 in [5]. Specifically, fw,s = C(w,w − s)
for 1 ≤ s ≤ w. In particular, the leftmost column in the table coincides with the Catalan
numbers, as shown in [7].

A recursive procedure similar to tacking a slant onto a fountain in Equation 3 can be
applied to three-dimensional mountains, as we see in the next section.

3 Mountains

Recall that a mountain is an arrangement of identical spheres into layers whose bottom
layer forms a rectangular grid and whose higher layers follow the three-dimensional gravity
rule. Also recall that mn,w,` is the number of mountains consisting of n spheres whose
base has width w and length `, and that mw,` =

∑
nmn,w,` is the number of mountains

with width w and length `. In this section, we obtain a recurrence relation for mn,w,`

which is used to derive a closed-form expression for mw,`.
In a close analogy to fountains, we can formally consider mountains to be a collection

of triples of positive integers in the following way. First, we imagine a mountain to be
located in a three-dimensional Cartesian coordinate system with one corner of its base at
the origin and the sides of the base aligned with the positive x and y-axes. Then each
sphere in the mountain can be uniquely identified by the layer that it is in and its x
and y-positions in this layer. We number the positions in each layer so that the x and
y-positions of a sphere in any layer coincide with those of the farthest sphere from the
origin among the four spheres supporting it in the layer below. Thus, in terms of integers,
we can define a subset M of N3 to be a (n,w, `) mountain if |M | = n and in the bottom
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layer (1, x, y) ∈M for all 1 ≤ x ≤ ` and 1 ≤ y ≤ w but (1, x, y) /∈M for any other values,
and for the gravity rule if h > 1 and (h, x, y) ∈M , then so are (h−1, x, y), (h−1, x−1, y),
(h− 1, x, y− 1), and (h− 1, x− 1, y− 1). Two mountains are distinct if one has a sphere
at some coordinate, but the other does not.

We first present some elementary properties of mn,w,` and mw,`. By rotation, it is
clear that mw,` = m`,w for all w, `. A mountain of width 1 could only consist of a single
contiguous row of spheres, and so m`,1,` = m1,` = 1. As for mountains of width 2, the
second horizontal layer has ` − 1 places to insert spheres, so that m2`+k,2,` =

(
`−1
k

)
and

m2,` = 2`−1.

∗

Figure 4: A (153, 9, 10) mountain from oblique and top views and its decomposition into
lateral faces. As an example of the coordinate system, the highest sphere in the light-
orange lateral face, marked with a ∗, is located in layer 4 with x-position 4 and y-position
9.

Mountains can be decomposed into horizontal layers, as shown in Figure 3. However,
just as fountains can be decomposed into a sequence of slants to enable an iterative method
of building them, mountains can likewise be decomposed into lateral faces, as is shown
in Figure 4. The kth lateral face of a mountain is the set of spheres whose x-position is
k, regardless of layer or y-position. What may be surprising is that each lateral face of
a mountain actually forms a fountain when placed upright. This follows directly from
the gravity rule, which ensures that any sphere with height greater than 1 lies atop four
spheres in the layer below. Two of these spheres lie in the same lateral face as the original
sphere, and are exactly those that must support it to satisfy the two-dimensional gravity
rule for fountains. Similar arguments as those used for slants of fountains then enable
any (n,w, `) mountain to be expressed as an `-tuple of fountains of width w.

We need a condition to test whether a sequence of fountains truly represents a moun-
tain, analogous to Equation 2 for fountains. The crucial step is to determine when one
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fountain can “lean on” another. We say a fountain F = 〈s1, ..., sw〉 leans on a fountain
F ′ = 〈s′1, ..., s′w〉, or conversely that F ′ supports F , and write F ′ � F if when the coins
in F are augmented to spheres with x-position ` and the coins in F ′ are augmented to
spheres with x-position `−1, then all the spheres in F satisfy the gravity rule. To charac-
terize this leaning relation, consider two such fountains F and F ′. The sphere at the top
of the kth slant in F has coordinates (sk, `, k) and by the gravity rule must be supported
by the two spheres in F ′ with coordinates (sk − 1, `− 1, k− 1) and (sk − 1, `− 1, k). The
slants s′k−1 and s′k in F ′ must contain these two spheres that support (sk, `, k), and so
s′k−1 ≥ sk−1 and s′k ≥ sk−1. Therefore, the characterization for one fountain leaning on
another is that 〈s′1, . . . , s′w〉 � 〈s1, . . . , sw〉 if and only if both s′k−1 ≥ sk−1 and s′k ≥ sk−1
for all 1 < k ≤ w. So, a sequence F1, . . . , F` of fountains of width w represents a mountain
if and only if F1 = 1w, the sequence of w ones, and F1 � · · · � F`. This characterization
of mountains is a direct generalization of Equation 2 for fountains.

We may now apply the methods of Section 2 to iteratively build large mountains from
small ones. An (n′, w, ` − 1) mountain may be extended to an (n,w, `) mountain with
n > n′ by tacking on a fountain of n − n′ spheres and width w that can lean on the
initial mountain’s final lateral face. If we define mn,w,`,F to be the number of (n,w, `)
mountains whose final lateral face is the fountain F , then mn,w,` =

∑
F mn,w,`,F . Leaning

a face F onto all mountains whose final lateral faces F ′ can support it gives the following
recurrence relation:

mn,w,1,F =

{
1 if F = 1w and n = w

0 otherwise.

mn,w,`,F =
∑
F ′�F

mn−|F |,w,`−1,F ′ for ` > 1.

(4)

Equation 4 can be considered the mountain analog of Equation 3 for fountains and is the
main tool for enumerating mountains. Using Maple to sum up Equation 4 over all w, `
and F ’s yields the numbers of mountains mn for various numbers of spheres n ≤ 20 as
1, 2, 2, 3, 3, 4, 6, 6, 9, 14, 18, 22, 33, 57, 76, 91, 139, 236, 348, 470, and, for example,
m63 = 29 964 295 890.

Equation 4 can also be used to enumerate mountains by the size of their bases. Sum-
ming over the number of spheres contained in each mountain, we have

mw,1,F =

{
1 if F = 1w

0 otherwise.

mw,`,F =
∑
F ′�F

mw,`−1,F ′ for ` > 1.

(5)

Note that Equation 5 is linear in the mw,`,F ’s (with coefficients of 1’s or 0’s) and so can
be rewritten in terms of a matrix. We define the leaning matrix Lw of order w, which
represents the relation that a fountain F of width w can lean on another fountain F ′ of
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width w, as follows:

Lw(F, F ′) =

{
1 if F ′ � F

0 otherwise.
(6)

So, Lw is a matrix of 0’s and 1’s whose rows and columns are indexed by fountains of
width w in some specified order, say dictionary order on the numbers of spheres on the
slants. The size of Lw is Cw × Cw, where Cw is the wth Catalan number. For instance,
for w = 3

L3 =




1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0 0 0 1 1

By adding a zero term to the sum in Equation 5 for each F ′ that does not support F , we
can express mw,`,F as a sum over all fountains using the leaning matrix

mw,`,F =
∑
F ′

Lw(F, F ′)mw,`−1,F ′ . (7)

To record the mountain counts themselves, we use column vectors. We define mw,`

to be the column vector of all mw,`,F ’s for the Cw many fountains of width w. We
order the entries in the column vector with the dictionary order on the fountains’ slant
representations. In this ordering, mw,1 has a first entry of 1, followed by 0’s. Each
instance of Equation 7 may be recast as a dot product of the matrix Lw with the mw,`−1
vector, i.e., mw,` = Lw ·mw,`−1. After iterating this multiplication ` − 1 times, we have
mw,` = L`−1

w ·mw,1. By summing over all lateral faces, we finally arrive a closed-form
expression for the number of mountains with a specified base mw,`, namely that mw,` is
the sum of the entries in the first column of the `− 1th power of the leaning matrix Lw,
i.e.,

mw,` = 1Cw · L`−1
w ·mw,1 . (8)

For instance with w = 3, m3,` = [1, 1, 1, 1, 1] ·L`−1
3 · [1, 0, 0, 0, 0]t. Equation 8 can be used to

compute the number of mountains whose bases are small. The following table enumerates
mw,` for w, ` ≤ 6.

mw,` ` = 1 2 3 4 5 6
w = 1 1 1 1 1 1 1

2 1 2 4 8 16 32
3 1 4 17 73 314 1351
4 1 8 73 690 6583 62962
5 1 16 314 6583 141120 3048513
6 1 32 1351 62962 3048513 149892010
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We note that the sequence 〈m3,`〉 in the table has been shown in [2] to have the
following ordinary generating function

A3(x) =
x(1− x)

1− 5x+ 3x2
, (9)

whose coefficients happen to coincide with OEIS sequence A018902 [9]. However, as of
this writing, sequences 〈mw,` : ` ≥ 1〉 for w ≥ 4 do not appear in OEIS.

4 Conclusion

While Equation 4 provides a recurrence relation to enumerate general fountains and Equa-
tion 8 provides an explicit formula for counting mountains based on the dimensions of
their bases, these methods are hardly efficient. The leaning matrix that encodes which
faces of width w can lean on which others is an Cw × Cw matrix, where Cw is the wth

Catalan number, approximately 4w/w3/2
√
π. So, the size of the leaning matrix is expo-

nential in the length of the mountain’s base. Equation 8 also requires a power of the
leaning matrix, but the power is small compared with the matrix’s size. Therefore, it is
unlikely that standard methods of accelerating computation of matrix powers, notably
repeated squaring or diagonalization, would improve efficiency. One possible source of
improvement would be to reduce the comparisons from every pair of faces by creating a
small number of classes of faces to compare. For fountains, it is easy given a final slant s
to partition slants as leaning on s and not leaning on s, but no such simple computation
is known for lateral faces of mountains.

A likely next step in the analysis of mountains would be a computation of the generat-
ing functions of 〈mn,w,`,F 〉, 〈mn,w,`〉, 〈mw,`〉, and 〈mn〉. Even though Equation 4 is linear,
there are several reasons why the generating function for 〈mm,w,`,F 〉 is likely nontrivial.
First, mn,w,`,F is indexed by a fountain, not just by integers. Second, the generating func-
tions for mountains must generalize in some sense the generating functions for fountains,
which, as seen in Equation 1 for Ramanujan’s continued fraction, are already non-trivial.
The problem of computing the generating functions for general classes of mountains is
open.

We conclude with a related problem suggested by Serban Raianu. Instead of arranging
spheres in the base of a mountain in a rectangle as part of a square lattice, the spheres can
also be arranged in a parallelogram as part of a hexagonal lattice. In this case the gravity
rule becomes simpler—each sphere above the base must sit on just the three spheres
immediately below it. This arrangement gives the densest possible packing of spheres.
With the spheres arranges in each layer as a hexagonal lattice, how many mountains are
there with a w × ` parallelogram base?
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