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Abstract - In this paper, we determine the equation of a Salkowski curve whose ratio
of torsion to curvature is given by 1

s , where s is the arc length of the curve. The Frenet-
Serret equations provide the third-order vector differential equation for the unit tangent
vector T (s) and the general (series) solution was obtained. In the end, the series solution is
entirely determined by the given initial conditions.
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1 Introduction

Geometers have defined and investigated space curves and their properties over the years.
Among them, Gaspard Monge wrote and published a paper about space curves in the
late 18th century. Monge’s work influenced his students to further develop the theory
of curves; the most notable of these students, concerning the theory of curves, was M.S.
Lancret. In 1802, he conjectured that a space curve was a helix if and only if its ratio
of torsion to curvature was constant. It was not until the mid-1840s that A.J.C. Barre
de Saint Venant provided proof for Lancret’s conjecture. Around the same period, F.
Frenet and J. Serret worked independently to obtain what we know today as the Frenet-
Serret Theorem. Subsequently, Gaston Darboux’s idea of a moving frame was the first
step in providing a unified theory of curves. Since the development of local curve theory,
research efforts have centered around the classification of curves and the investigation of
the geometric properties of curves. The Frenet-Serret Theorem provides the foundation
for such work because it removes the need for an explicit equation of the curve. Some
current problems include involute-evolute curve pairs, natural mate pairs, and curves lying
on surfaces as seen in [3], [4], and [9]. Most notably, B.Y. Chen proved that a curve is
a rectifying curve if and only if its ratio of torsion to curvature is a linear function of
its arc length [2]. A type of curve relevant to this paper is the Salkowski curve, a curve
with constant curvature and non-constant torsion as defined in [10]. Other works focus
on studying several kinds of space curves in different ambient spaces. For example, the

∗This work was supported by an Andrews Undergraduate Research Scholarship

the pump journal of undergraduate research 6 (2023), 346–353 346



necessary conditions for a curve to be a rectifying curve in four-dimensional Euclidean
space, three-dimensional Minkowski space, and four-dimensional Minkowski space have
been discussed in [6], [5], and [1], respectively. While most research has a curve as the
input and geometric properties as the output, efforts have been made recently to do the
opposite. The process of constructing a curve from its torsion and curvature is allowed
by the Fundamental Theorem of Curves. One can find an interesting example in the
textbook “Elements of Differential Geometry” by Millman and Parker on page 44. It
shows the construction of the explicit formula of a circular helix by assuming the ratio of
torsion to curvature is constant, and the curvature is positive and constant. In 2015, Seo
and Oh used a similar method in [8] to determine the equation of a Salkowski, rectifying
curve in three-dimensional Euclidean space. Recently, Yilmaz found the equation of a
Salkowski, rectifying curve in Minkowski three-space as seen in [11]. In this paper, we
aim to determine the equation of another Salkowski space curve. Here, the curve satisfies
the ratio of torsion to curvature of 1

s
, where s is the arc length of the curve. We derive a

differential equation in terms of the unit tangent vector and find the series solution to the
differential equation. The explicit formula of the curve can be provided after performing
the appropriate integrations and applying the given initial conditions.

2 Overview of Local Curve Theory [7]

Let α = α(t) : I ⊂ R −→ R3 be a regular smooth curve on an open interval I = (a, b).

The unit tangent vector ~T (t) of α(t) is defined to be

~T (t) =
α′(t)

||α′(t)||
.

If ||α′(t)|| = 1 for all t, then α is said to be a unit speed curve. The arc length of α is
given by

s = s (t) =

∫ t

t0

||α′(σt)||dσt.

Under the arc length reparametrization, the curve α(s) becomes a unit speed curve. It
follows directly that the unit tangent vector of a unit speed curve is

~T (s) = α′(s). (1)

For the remainder of the paper, α(t) denotes a regular curve that is not necessarily unit
speed, while α(s) denotes a unit speed curve. We continue by defining the Frenet-Serret
apparatus of a unit speed curve α(s).

Definition 2.1 Let α be a unit speed curve. The Frenet-Serret apparatus of α is

the pump journal of undergraduate research 6 (2023), 346–353 347



{κ(s), τ(s), ~T (s), ~N(s), ~B(s)}, where

~T (s) = α′(s),

~N(s) =
~T ′(s)

||~T ′(s)||
,

~B(s) = ~T (s)× ~N(s),

κ(s) = ||~T ′(s)||, and

τ(s) = −〈 ~B′(s), ~N(s)〉.

Two principal components form the Frenet-Serret apparatus: the geometric properties
of α and an orthonormal basis of R3 that spans α. The first geometric property is the
curvature κ(s) of α. The curvature measures how much a curve deviates from being a
straight line (i.e. κ(s) = 0). On the other hand, the torsion τ(s) measures how much a
curve deviates from lying on a plane (i.e. τ(s) = 0). The orthonormal basis consisting

of ~T (s), ~N(s), and ~B(s) is often called the Frenet frame. The Frenet frame is a moving

frame since the orientation of the frame varies along the curve while ~T (s), ~N(s), and ~B(s)
remain orthogonal to each other. In Figure 1 below, we present a circular helix along with
its Frenet frame at different positions along the curve.

Figure 1: Circular helix with its Frenet frame. The tangent vector is red, the principal
normal vector is green, and the binormal vector is blue.

We proceed to show how the Frenet-Serret Theorem connects different elements of the
Frenet-Serret apparatus.

Theorem 2.2 (Frenet-Serret Theorem) Let α(s) be a unit speed curve with curvature
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κ(s) 6= 0 and Frenet-Serret apparatus {κ(s), τ(s), ~T (s), ~N(s), ~B(s)}, then ~T ′(s)~N ′(s)
~B′(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 ~T (s)
~N(s)
~B(s)

 .
Additionally, the equations in Theorem 2.2 are often addressed as the Frenet-Serret equa-
tions. We conclude this overview by presenting the Fundamental Theorem of Curves.

Theorem 2.3 (Fundamental Theorem of Curves) Any regular curve with κ > 0 is com-
pletely determined, up to position, by its curvature and torsion. Let (a, b) be an interval
about s0, κ̃(s) > 0 a C1 function on (a, b), τ̃(s) a continuous function on (a, b), x0 a

fixed point of R3, and { ~D, ~E, ~F} a fixed right-handed orthonormal basis of R3. Then there
exists a unique C3 regular curve α : (a, b) −→ R3 such that:

1. the parameter is arc length from α(s0),

2. α(s0) = x0, ~T (s0) = ~D, ~N(s0) = ~E, ~B(s0) = ~F , and

3. κ(s) = κ̃(s), τ(s) = τ̃(s).

3 Deriving and Solving a Vector Differential Equation for the
Tangent Vector

We are interested in the case where the curvature κ is a positive constant satisfying the
following equation of the torsion:

τ(s) =
κ

s
. (2)

Given the relation from (2), the Frenet-Serret equations for this case become

~T ′(s) = κ ~N(s), (3)

~N ′(s) = −κ~T (s) +
κ

s
~B(s), and (4)

~B′(s) = −κ
s
~N(s). (5)

Now, we derive a differential equation for the tangent vector ~T (s). By taking the derivative
of (3) and substituting (4), we get

T ′′ = κN ′ = −κ2T (s) +
κ2

s
B. (6)

From (4) and the first equation of (6) for N ′, we have

B =
s

κ
(N ′ + κT ) =

s

κ
(
T ′′

κ
+ κT ). (7)
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By taking another derivative of (6), substituting B from (7) and B′ from (5), we obtain

the following third-order differential equation for the unit tangent vector ~T (s).

~T ′′′(s) +
1

s
~T ′′(s) + κ2

(
1 +

1

s2

)
~T ′(s) +

κ2

s
~T (s) = ~0. (8)

One can observe that solutions to (8) are valid where s 6= 0, so we consider a series
solution on an interval around a point s = s0 6= 0.
Let ~a0, ~a1, and ~a2 be any three fixed linearly independent vectors in R3. With this basis
for R3, the series solution to (8) can be written

~T (s) = f0(s)~a0 + f1(s)~a1 + f2(s)~a2 (9)

for three real-valued smooth functions f0(s), f1(s), f2(s).
Differentiating equation (9) and substituting into (8), one obtains the same third-order
ordinary differential equation for f0, f1, f2

0 =
2∑

n=0

(f ′′′n +
1

s
f ′′n + κ2(1 +

1

s2
)f ′n +

κ2

s
fn)~an.

Since ~a0,~a1,~a2 are linearly independent, we obtain

0 = f ′′′n +
1

s
f ′′n + κ2(1 +

1

s2
)f ′n +

κ2

s
fn

for n = 0, 1, 2. The differential equations for fn all have the form

0 = f ′′′ +
1

s
f ′′ + κ2(1 +

1

s2
)f ′ +

κ2

s
f. (10)

Now, we expand 1
s

and 1
s2

as a power series at s0 as shown below.

1

s
=

1

s0

∑
j=0

(−1)js−j0 (s− s0)j =
1

s0

[
1− 1

s0
(s− s0) +

1

s20
(s− s0)2 −

1

s30
(s− s0)3 + ...

]
,

(11)
1

s2
=

1

s20

[
1− 2

s0
(s− s0) +

3

s20
(s− s0)2 −

4

s30
(s− s0)3 + ...

]
. (12)

We use a series solution centered at s0, setting

f(s) =
∞∑
n=0

bn(s− s0)n.

Next, substituting the expansions (11) and (12) into (10), we observe that the coefficients
bn, n ≥ 3 are all dependent on b0, b1, and b2.
Here are a couple of more coefficients of bn.

b3 = − 2

3!s0
b2 −

κ2

3!

(
1 +

1

s20

)
b1 −

κ2

3!s0
b0,
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b4 =
2!κ2

4!

(
2

κ2s20
− 1− 1

s20

)
b2 +

3κ2

4!s30
b1 +

2κ2

4!s20
b0,

b5 =
1

60

(
−6

s30
+
κ2

s0
+

6κ2

s30

)
b2 +

1

120

(
2κ4

s20
+
κ4

s40
+ κ4 − 11κ2

s40

)
b1

+
1

120

(
κ4

s0
+
κ4

s30
− 6κ2

s30

)
b0.

We consider the initial conditions for (8) as below,

~a0 = ~T (s0), ~a1 = ~T ′(s0), ~a2 = ~T ′′(s0), (13)

where ~a0,~a1 and ~a2 are linearly independent vectors in (9). Thus, they yield the following.

• For f0, we have b0 = 1, b1 = 0, b2 = 0.

• For f1, we have b0 = 0, b1 = 1, b2 = 0.

• For f2, we have b0 = 0, b1 = 0, b2 = 1
2
.

Therefore, the series solution ~T (s) becomes

~T (s) = f0(s)~a0 + f1(s)~a1 + f2(s)~a2, (14)

where

f0(s) = 1− κ2

3!s0
(s− s0)3 +

2κ2

4!s20
(s− s0)4 +

κ4

5!s0

(
1 +

1

s20
− 6

κ2s20

)
(s− s0)5 + · · · ,

f1(s) = (s− s0)− κ2

3!

(
1 +

1

s20

)
(s− s0)3 +

3κ2

4!s30
(s− s0)4+

+
1

120

(
κ4 +

2κ4

s20
+
κ4

s40
− 11κ2

s40

)
(s− s0)5 + · · · ,

f2(s) =
1

2
(s− s0)2 − 1

3!s0
(s− s0)3 +

κ2

4!

(
2

κ2s20
− 1− 1

s20

)
(s− s0)4+

+
1

5!

(
κ2

s0
+

6κ2

s30
− 6

s30

)
(s− s0)5 + · · · .

4 Obtaining the Final Equation of the Curve

According to (1), the equation of the curve α(s) is given by

α(s) =

∫ s

s0

~T (σs)dσs + α(s0).
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From (3) and (13), and by the definition of the binormal vector B, we have

~T (s0) = ~a0, ~N(s0) =
~a1
κ
, ~B(s0) =

1

κ
(~a0 × ~a1). (15)

Then, the set of vectors {~a0, 1κ~a1,
1
κ
(~a0 ×~a1)} is orthonormal and the vector ~a2 is a linear

combination of these three vectors.
From (6), we have

~T ′′(s0) = −κ2~a0 +
κ2

s0
~B(s0).

The third condition in (13) and (15) implies that

~a2 = −κ2~a0 +
κ

s0
(~a0 × ~a1),

and by (3), and (9),

~T (s) =
(
f0(s)− κ2f2(s)

)
~a0 + f1(s)~a1 +

κ

s0
f2(s)(~a0 × ~a1), (16)

~N(s) =

(
1

κ
f ′0(s)− κf ′2(s)

)
~a0 + f ′1(s)

~a1
κ

+
f ′2(s)

s0
(~a0 × ~a1), (17)

where the functions f0(s), f1(s), and f2(s) are as in (14). With this, we have the following.

Theorem 4.1 A unit speed curve α(s) with arc length s, torsion τ(s) = κ
s
, and constant

curvature κ > 0 has the expression

α(s) =

(∫ s

s0

f0(σs)− κ2f2(σs)dσs
)
~a0+(∫ s

s0

f1(σs)dσs

)
~a1 +

(
κ

s0

∫ s

s0

f2(σs)dσs

)
(~a0 × ~a1) + α(s0),

where the functions f0(s), f1(s) and f2(s) are stated earlier in (14), and {~a0, ~a1, ~a0 × ~a1}
is an orthogonal basis of R3. Additionally, the Frenet frame vectors for this curve are

~T (s) =
(
f0(s)− κ2f2(s)

)
~a0 + f1(s)~a1 +

(
κ

s0
f2(s)

)
(~a0 × ~a1),

~N(s) =

(
1

κ
f ′0(s)− κf ′2(s)

)
~a0 +

f ′1(s)

κ
~a1 +

(
f ′2(s)

s0

)
(~a0 × ~a1),

and ~B(s) = ~T (s)× ~N(s).
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