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1 Introduction

The Hurwitz action is a combinatorial action on tuples of group elements, based on
basic moves that swap two elements, modifying one, while preserving the product. Its
study dates to work of Hurwitz in the late 19th century. This paper is motivated by
an observation about the Hurwitz action and the complex reflection group G6 = 〈a, b |
a3 = b2 = 1, ababab = bababa〉. We took factorizations containing only a, b, and a−1, and
randomly permuted the factors. Permuting elements in these factorizations preserved the
size of the their Hurwitz orbits (see Conjecture 7.1). This observation raised the question
“In what ways can we reorder or modify the factors in a factorization while preserving
the size of its Hurwitz orbit?”

In Section 3, we prove that for elements x and y in a group G, the Hurwitz orbits of
(x, y), (x−1, y−1), and (y, x) have equal size. We then generalize these results to longer
factorizations in several ways. We prove in Section 4 that for any x1, x2, . . . , x` in a
group G, (x1, x2, . . . , x`) and (x2, . . . , x`, x1) have Hurwitz orbits of equal size. In Section
5 we show that (x−1` . . . , x−12 , x−11 ) belongs to an orbit of the same size as well. In the
special case where all x1, x2, . . . , x` have order 1 or 2, we see that the Hurwitz orbit of
(x1, x2, . . . , x`) has the same size as the orbit of (x`, x`−1, . . . , x1).

In Section 6, we prove that (x1, x2, . . . , x`) and (x`, x`−1, . . . , x1) have Hurwitz orbits of
equal size when the xi belong to a generating set in a group presentation with “reversible
relations”. We end in Section 7 with applications to Coxeter groups and Shephard groups,
as well as a conjecture about G6.
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2 Background

In a group G, a factorization of an element g ∈ G is a tuple of elements in G that multiply
to g. Given a factorization (x1, x2, . . . , x`) of an element in G, a Hurwitz move at position
i, with 1 ≤ i ≤ `− 1, is defined to be the following operation:

(x1, . . . , xi−1, xi, xi+1, xi+2, . . . , x`)
σi→

(x1, . . . , xi−1, xi+1, x−1i+1xixi+1, xi+2, . . . , x`).

The inverse σ−1i of the Hurwitz move σi is given by

(x1, . . . , xi−1, xi, xi+1, xi+2, . . . , x`)
σ−1
i→

(x1, . . . , xi−1, xixi+1x
−1
i , xi, xi+2, . . . , x`).

The Hurwitz orbit of a factorization T is the set of factorizations which can be produced
by applying Hurwitz moves to T . We use the term “orbit” because Hurwitz moves give
rise to an action of the braid group. The term size refers to the cardinality of the Hurwitz
orbit.

The first paper to study the Hurwitz action was written by A. Hurwitz in 1891 [7].
Historically, researchers who have studied the Hurwitz action have been interested in
when two factorizations belong to the same Hurwitz orbit. For example, [9] and [2]
answered the question of when two transposition factorizations in the symmetric group
belong to the same Hurwitz orbit. [6], [15], and [3] answered this same question, instead
for factorizations in the dihedral group. Many authors have also considered the case of
factorizations of special elements in complex reflection groups or Coxeter groups [4, 10,
11, 1, 8, 14, 5]. Researchers have explored the Hurwitz action from different perspectives
as well. In 2019, Mühle and Ripoll studied the Hurwitz action as a connectivity property
on posets [12]. Unlike previous papers, our paper is concerned not with the question of
when two factorizations belong to the same Hurwitz orbit, but instead when they have
Hurwitz orbits of the same size.

3 Factorizations of length two

In this section we prove that (x, y), (y, x), and (x−1, y−1) have Hurwitz orbits of the same
size. This observation on the orbit sizes of length-2 factorizations serves as a prototype
and motivating example for the more general results in later sections. We begin with a
lemma on the general form of (x, y) after any number of Hurwitz moves.

Lemma 3.1 Let G be a group, n an integer, and x, y ∈ G. Then

1. σ2n(x, y) = (y−1(x−1y−1)n−1x(yx)n−1y, (y−1x−1)ny(xy)n) and

2. σ2n+1(x, y) = ((y−1x−1)ny(xy)n, y−1(x−1y−1)nx(yx)ny).
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Proof.
The proof of (a) is by induction on n. When n = 0,(

y−1(x−1y−1)−1x(yx)−1y, (y−1x−1)0y(xy)0
)

=
(
y−1(yx)x(x−1y−1)y, y

)
= (x, y)

as required. Now assume the lemma holds when n = k, and let (a, b) = σ2k(x, y). By
assumption, b = (y−1x−1)ky(xy)k. Perform two Hurwitz moves on (a, b) to obtain

σ2(k+1)(x, y) = (b−1ab, b−1a−1bab).

Since Hurwitz moves on a factorization preserve its product, ab = xy and b−1a−1 =
y−1x−1. By assumption b = (y−1x−1)ky(xy)k. Thus

σ2(k+1)(x, y) = (b−1xy, y−1x−1bxy)

=
(
(y−1x−1)ky−1(xy)kxy, y−1x−1(y−1x−1)ky(xy)kxy

)
=
(
y−1(x−1y−1)(k+1)−1x(yx)(k+1)−1y, (y−1x−1)k+1y(xy)k+1

)
,

and the induction is complete.
Now let (a, b) = σ2n+1(x, y). By part (a), a = (y−1x−1)ny(xy)n. Since ab = xy,

b = (y−1x−1)ny−1(xy)nxy. Thus

(a, b) =
(
(y−1x−1)ny(xy)n, y−1(x−1y−1)nx(yx)ny

)
.

The proof for negative n is similar. �

Theorem 3.2 Let G be any group, and x, y any elements of G. The Hurwitz orbit of the
factorization (x, y) has the same size as the Hurwitz orbit of (y, x).

A version of this result appears as Lemma 2.9 in [12].
Proof. Let n be a nonnegative integer, and suppose σ2n(x, y) = (x, y). By Lemma 3.1,

(x, y) =
(
y−1(x−1y−1)n−1x(yx)n−1y, (y−1x−1)ny(xy)n

)
.

Observe that the second factor of this factorization may be written as

y−1(x−1y−1)n−1x−1(yx)ny,

so that
y = (x−1y−1)n−1x−1(yx)n = x−1(y−1x−1)n−1y(xy)n−1x.

By Lemma 3.1,

σ2n(y, x) =
(
x−1(y−1x−1)n−1y(xy)n−1x, (x−1y−1)nx(yx)n

)
=
(
y, (x−1y−1)nx(yx)n

)
.

The product of this factorization is yx, so the right-hand value of this factorization is x,
and σ2n(y, x) = (y, x).
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If σ2n+1(x, y) = (x, y), then by Lemma 3.1

y = y−1(x−1y−1)nx(yx)ny = (x−1y−1)nx(yx)n. (1)

By Lemma 3.1 and (1)

σ2n+1(y, x) =
(
(x−1y−1)nx(yx)n, x−1(y−1x−1)ny(xy)nx

)
=
(
y, x−1(y−1x−1)ny(xy)nx

)
So σ2n+1(y, x) = (y, x)

We have shown that for any nonnegative integer n, σn(x, y) = (x, y) implies σn(y, x) =
(y, x). Thus the size of the Hurwitz orbit of (y, x) is less than or equal to the size of the
Hurwitz orbit of (x, y). By interchanging x and y in the argument, it can be seen that
σn(y, x) = (y, x) implies σn(x, y) = (x, y). So (x, y) and (y, x) have Hurwitz orbits of the
same size. �

We expand on Lemma 3.1 to prove that (x, y) has the same sized Hurwitz orbit as
(x−1, y−1).

Theorem 3.3 Let G be any group, and x, y any elements of G. The Hurwitz orbit of the
factorization (x, y) has the same size as the Hurwitz orbit of (x−1, y−1).

Proof.
Let n be a nonnegative integer, and assume σ2n(x, y) = (x, y). By Lemma 3.1, y =

(y−1x−1)ny(xy)n, so (xy)ny = y(xy)n. Conjugate on both sides by y−1 to obtain

y(xy)nyy−1 = yy(xy)ny−1

(yx)ny = y(yx)n.

Multiplying this last equality on both sides by y−1, we have that y−1 and (yx)n commute.
So y−1 = (yx)ny−1(x−1y−1)n, which is precisely the right-hand value of σ2n(x−1, y−1) by
Lemma 3.1. Thus σ2n(x−1, y−1) = (x−1, y−1).

If σ2n+1(x, y) = (x, y), then Lemma 3.1 gives

y = y−1(x−1y−1)nx(yx)ny,

so that y−1 = y−1(x−1y−1)nx−1(yx)ny = (x−1y−1)nx−1(yx)n, or equivalently x−1 =
(yx)ny−1(x−1y−1)n. But, by Lemma 3.1, this implies the left-hand value of σ2n+1(x−1, y−1)
is x−1, and so necessarily the right-hand value must be y−1.

Altogether we have shown that σn(x, y) = (x, y) implies σn(x−1, y−1) = (x−1, y−1).
With little modification the same argument can be used to show that the converse is true
as well. Thus (x, y) and (x−1, y−1) have Hurwitz orbits of the same size. �

4 Cycling

In this section, we show that cycling elements in a factorization leaves Hurwitz orbit size
unchanged.
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Lemma 4.1 Let G be any group containing elements x1, x2, . . . , x` and y. Then the
factorizations (x1, x2, . . . , x`) and (y−1x1y, y

−1x2y, . . . , y
−1x`y) have Hurwitz orbits of the

same size.

Proof.
To prove that the orbits are of equal size, we will find a bijection between them. First

we show that if
σp1 . . . σpn(x1, x2, . . . , x`) = (z1, z2, . . . , z`),

then
σp1 . . . σpn(y−1x1y, y

−1x2y, . . . , y
−1x`y) = (y−1z1y, y

−1z2y, . . . , y
−1z`y),

where each pi ∈ {1, . . . , ` − 1}. We verify that this is true when one Hurwitz move is
applied: if 1 ≤ i ≤ `− 1, then

(. . . , xi, xi+1, . . .)
σi→ (. . . , xi+1, x

−1
i+1xixi+1, . . .),

(. . . , y−1xiy, y
−1xi+1y, . . .)

σi→ (. . . , y−1xi+1y, y
−1x−1i+1xixi+1y, . . .).

The result follows by induction.
Observe that this if/then relationship goes both ways:

Y = (y−1x1y, y
−1x2y, . . . , y

−1x`y)

is the factorization obtained by conjugating every element in

X = (x1, x2, . . . , x`)

by y, and X is the factorization obtained by conjugating every element in Y by y−1.
We may define a map

(z1, z2, . . . , z`) 7→ (y−1z1y, y
−1z2y, . . . , y

−1z`y),

from the Hurwitz orbit of (x1, x2, . . . , x`) to that of (y−1x1y, y
−1x2y, . . . , y

−1x`y). This
function is the desired bijection. �

Theorem 4.2 Let G be any group containing elements x1, x2, . . . , x`. Then the factor-
izations (x1, x2, . . . , x`) and (x2, . . . , x`, x1) have Hurwitz orbits of the same size.

Proof. Suppose we apply the Hurwitz moves σ`−1, σ`−2, . . . , σ1 in that order to the
factorization (x2, . . . , x`, x1). The resulting factorization is (x1, x

−1
1 x2x1, . . . , x

−1
1 x`x1).

This resulting factorization is identical to (x1, x2, . . . , x`), except every element has been
conjugated by x1; in particular x1 = x−11 x1x1. By Lemma 4.1, our theorem is true. �
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5 Reverses

In this section we show that (x1, x2, . . . , x`) will always have the same sized Hurwitz orbit
as (x−1` , . . . , x−12 , x−11 ). We also expand on some ideas presented in Section 4.

Theorem 5.1 Let G be any group containing elements x1, x2, . . . , x`. Then the factor-
izations (x1, x2, . . . , x`) and (x−1` , . . . , x−12 , x−11 ) have Hurwitz orbits of the same size.

Proof. To prove that the orbits are of equal size, we will find a bijection between them.
First we show that if

σp1 . . . σpn(x1, x2, . . . , x`) = (z1, z2, . . . , z`),

then
σ−1`−p1 . . . σ

−1
`−pn(x−1` , . . . , x−12 , x−11 ) = (z−1` , . . . , z−12 , z−11 )

where each pi ∈ {1, . . . , ` − 1}. We verify that this is true when one Hurwitz move is
applied: if 1 ≤ i ≤ `− 1, then

(. . . , xi, xi+1, . . .)
σi→ (. . . , xi+1, x

−1
i+1xixi+1, . . .),

(. . . , x−1i+1, x
−1
i , . . .)

σ−1
`−i→ (. . . , x−1i+1x

−1
i xi+1, x

−1
i+1, . . .).

The result follows by induction. In fact this if/then relationship goes both ways because
(x−1k )−1 = xk.

We may define the following function: some factorization (z1, z2, . . . , z`) in the Hurwitz
orbit of (x1, x2, . . . , x`) is mapped to the factorization (z−1` , . . . , z−12 , z−11 ), which is in the
Hurwitz orbit of (x−1` , . . . , x−12 , x−11 ). This function is the desired bijection. �

One interesting case of Theorem 5.1 is when every element in a factorization has order
1 or 2.

Corollary 5.2 Let G by any group containing x1, x2 . . . , x` such that xk has order 1 or 2
for k = 1, . . . , `. Then (x1, x2, . . . , x`) and (x`, . . . , x2, x1) have Hurwitz orbits of the same
size.

Proof. If xk has order 1 or 2, then xk = x−1k . So the factorization (x−1` , . . . , x−12 , x−11 ) is
equal to (x`, . . . , x2, x1). Therefore, by Theorem 5.1 this corollary is true. �

Remark 5.3 In Theorem 4.2 we prove that the factorizations

(x1, x2, . . . , x`), (x2, . . . , x`, x1)

will always have the same sized Hurwitz orbits. This theorem produces particularly
interesting results when observing factorizations containing only two distinct elements.

Suppose we have a factorization (x1, x2, . . . , x`) such that each xi, 1 ≤ i ≤ `, is equal to
y or z. One can show that if the factorization has length `, ` ≤ 5, then (x1, x2, . . . , x`) has
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the same sized Hurwitz orbit as its reverse, (x`, . . . , x2, x1). This is because (x`, . . . , x2, x1)
can be obtained by cycling (x1, x2, . . . , x`).

The following is an example. Suppose we want to show that (z, z, y, z, y) has the same
sized Hurwitz orbit as (y, z, y, z, z). Using Theorem 4.2, we can show that (z, z, y, z, y)
has the same sized Hurwitz orbit as (z, y, z, y, z) which has the same sized Hurwitz orbit
as (y, z, y, z, z).

However, this property does not necessarily hold when there are more than two distinct
elements in the factorization, or when the length of the factorization is greater than 5.
For example, suppose you take the factorization (x, y, z) and you want to prove that
its Hurwitz orbit has the same size as its reverse, (z, y, x). Cycling, we get (x, y, z) ≈
(y, z, x) ≈ (z, x, y) ≈ (x, y, z). We have cycled completely through (x, y, z) without
producing (z, y, x). Now let us take a look at a case where the factorization has length
greater than 5. Let us take the factorization (x, x, y, x, y, y) and show that we cannot
produce its reverse (y, y, x, y, x, x) through cycling:

(x, x, y, x, y, y) ≈ (x, y, x, y, y, x) ≈ (y, x, y, y, x, x) ≈
(x, y, y, x, x, , y) ≈ (y, y, x, x, y, x) ≈ (y, x, x, y, x, y) ≈ (x, x, y, x, y, y).

We have shown a case of a length 6 factorization where cycling does not produce its
reverse. Our remark proves that any factorization of length ` ≤ 5, with 1 or 2 distinct
elements has the same sized Hurwitz orbit as its reverse.

6 Double reverses and reverse relations

In this section, we investigate groups with presentations in which relations between the
generators are reversible. We prove that in such groups, Hurwitz orbit size is preserved
when reversing factorizations of elements from the generating set. This result follows as a
corollary of the main theorem in this section, Theorem 6.6, which proves that a modified
reversal operation on factorizations consisting of arbitrary words preserves Hurwitz orbit
size.

We begin by recalling a number of standard definitions from the literature – see,
for example, [13]. Let X = {x1, x2, . . . , xn} be a set of distinct elements, and X−1 =
{x−11 , x−12 , . . . , x−1n } a set of elements distinct from each other and from the elements of
X. A word on X ∪X−1 is a string of finitely many elements, or letters, from X ∪X−1.
An inverse pair is a word of the form xix

−1
i or x−1i xi, and a word is said to be reduced if it

contains no inverse pairs. The set F (X) of all reduced words on X∪X−1 is a group under
the operation of concatenation followed by deletion of inverse pairs; it is called the free
group on n generators. The inverse of an element xi1xi2 . . . xip ∈ F (X) is x−1ip x

−1
ip−1

. . . x−1i1 .
Now let G be a group and S a subset of G. The normal closure of S in G is defined as

the intersection of all normal subgroups of G containing S. Every element of the normal
closure of S in G is the product of conjugates of elements of S.

A presentation 〈X | R〉 of a finitely generated group G consists of a generating set
X = {x1, x2, . . . , xn} and a set of relations R ⊂ F (X), such that the quotient of F (X)
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by the normal closure of R in F (X) is isomorphic to G. We denote the normal closure of
R in F (X) by N .

The set X is identified with a generating set for G, and two elements xi1xi2 . . . xip and
xj1xj2 . . . xjq are equal in G if and only if they belong to the same coset of N in F (X). To
distinguish between the two groups, it will be useful to write a = b for equality in F (X)
and a ≡ b for equality in G.

If a ∈ F (X), the reverse a∗ of a is obtained by reversing the order of the letters in a.
If a = xi1xi2 . . . xip , then a∗ = xipxip−1 . . . xi1 . If some inverse pair xix

−1
i appears in a∗,

then x−1i xi appears in a, a contradiction because a is reduced. So the reverse of a reduced
word is itself a reduced word. With this notation we have(

a−1
)∗

= x−1i1 x
−1
i2
. . . x−1ip = (a∗)−1 . (2)

We begin with a proposition on how to calculate reverses of products in F (X).

Proposition 6.1 Let a, a1, a2, . . . , am be elements of F (X) such that a = a1a2 . . . am.
Then a∗ = a∗ma

∗
m−1 . . . a

∗
1. That is, multiplying words in F (X) and reversing their product

is equivalent to reversing each word, reversing the order of multiplication, and taking the
product.

Proof. It suffices to verify the statement when a is a product of two elements a1 and a2
of F (X). The proposition then follows by induction.

Suppose a = xi1xi2 . . . xip , a1 = xj1xj2 . . . xjq , and a2 = xk1xk2 . . . xkr . We want to
show xipxip−1 . . . xi1 = (xkrxkr−1 . . . xk1)(xjqxjq−1 . . . xj1). Since a1 and a2 are reduced,
either xkrxkr−1 . . . xk1xjqxjq−1 . . . xj1 is reduced or xk1xjq is an inverse pair. In the first
case it follows that xj1xj2 . . . xjqxk1xk2 . . . xkr is reduced and is thus equal to a. So a∗ =
xkrxkr−1 . . . xk1xjqxjq−1xj1 = a∗2a

∗
1, as required.

If xk1xjq is an inverse pair, then so is its reverse. Deleting these inverse pairs gives

a = (xj1xj2 . . . xjq−1)(xk2xk3 . . . xkr),

a∗2a
∗
1 = (xkrxkr−1 . . . xk2)(xjq−1xjq−2 . . . xj1).

This process continues until there are no more inverse pairs to be deleted. �
The groups of interest in this section can now be defined. A presentation 〈X | R〉 for a

group G is said to have reversible relations if for every xi1xi2 . . . xip ∈ R the reverse word
xipxip−1 . . . xi1 is contained in N .

For example, two commonly used presentations of the dihedral group of order 2n have
reversible relations. Let D2n = 〈r, s | rn = s2 = 1, rs = sr−1〉. Formally we can say
D2n = 〈r, s | R〉 where R = {rn, s2, rsrs−1}. Then (rn)∗ = rn ∈ R, (s2)∗ = s2 ∈ R, and
(rsrs−1)∗ = s−1rsr = s−1(rsrs−1)s ∈ N , so this presentation has reversible relations.

Now consider the presentation 〈a, b | a2 = b2 = (ab)n = 1〉 for D2n. Since the
reverse of (ab)n is (ba)n = b(ab)nb−1 ∈ N , this presentation again has reversible relations.
An important part of our definition of reversible relations is that reverse words are not
required to be in the set of relations R itself, but rather in the normal closure N of R.

the pump journal of undergraduate research 5 (2022), 52–64 59



The presentation 〈a, b | a4 = 1, a2 = b2, ba = a−1b〉 for the quarternion group Q8 is
another example of a presentation with reversible relations. However, Q8 can also be
given by 〈−1, i, j, k | (−1)2 = 1, i2 = j2 = k2 = ijk = −1〉, which does not have the same
property: while ijk(−1) = 1, the reverse word (−1)kji is equal to (−1)k(−1)k = k2 =
−1 6= 1.

Remark 6.2 Suppose 〈X | R〉 is a group presentation, and we want to show that it has
reversible relations. Our definition would have us reverse each word in R and check that
these reverses belong to N . This process can be made easier by the following observations.
Relations giving the order of a generator, such as rn = 1, are always reversible. Equations
of the form a = a∗, such as xyxy = yxyx, are reversible. Equations a = b where a and b
are palindromes, which is to say a = a∗ and b = b∗ in F (X), are reversible.

With an arbitrary presentation, the reverses of two equal words need not be equal.
For example, in Q8 we have ij = k but ji = −k 6= k. The next proposition shows that
this never happens when reversing words on a generating set with reversible relations.

Proposition 6.3 Suppose that the group G is given by a presentation 〈X | R〉 with
reversible relations. If a, b ∈ F (X) and a ≡ b in G, then a∗ ≡ b∗.

Proof. The elements a and b belong to the same coset of N in F (X), so a = bn for
some n ∈ N . Proposition 6.1 gives a∗ = n∗b∗, so a∗ and b∗ belong to the same coset of N
if n∗ ∈ N . That is, a∗ ≡ b∗ if N is closed under the operation of reversing words.

Every element n ∈ N is the product of conjugates of elements of R. If

n = b1a1b
−1
1 b2a2b

−1
2 · · · bmamb−1m

with ai ∈ R, bi ∈ F (X), i = 1, 2, . . . ,m, then by Proposition 6.1

n∗ =
(
b−1m
)∗
a∗mb

∗
m

(
b−1m−1

)∗
a∗m−1b

∗
m−1 · · ·

(
b−11

)∗
a∗1b
∗
1.

The presentation 〈X | R〉 has reversible relations, so a∗i ∈ N for all i. Since (b−1i )∗ =
(b∗i )

−1, n∗ is the product of conjugates of elements of N , and thus n∗ ∈ N . �
The main theorem in this section concerns an operation on factorizations which does

more than just reverse the order of the factors: if 〈X | R〉 is a presentation for the group
G, and if U and V are length-` factorizations of elements in G, we say U is a double
reverse of V if there exist a1, a2, . . . , a` ∈ F (X) such that

U = (a1, a2, . . . , a`) ,

V =
(
a∗` , a

∗
`−1, . . . , a

∗
1

)
.

That is, U is a double reverse of V if V can be obtained by reversing the order in which
words appear in U and reversing each word. This relation is symmetric, so we say U and
V are double reverses.
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Remark 6.4 Double reverses are not unique. For example, with the presentation for
Q8 given above we have that T = (i, j, ij) and U = (ji, j, i) are double reverses. Also
V = (k, j, i) is a double reverse of T because ij = k. But ji = −k 6= k, so U 6= V .

The next lemma lets us preserve the double reverse relation after performing a series
of Hurwitz moves on one factorization. We will use it to build a map between the Hurwitz
orbits of double reverse factorizations.

Lemma 6.5 Let G = 〈X | R〉, let U and V be length-` factorizations of elements in
G, and assume U and V are double reverses. Perform n Hurwitz moves σp1 , σp2 , . . . , σpn
on U in order as listed, with pi ∈ {1, . . . , ` − 1} for i = 1, . . . , n. Call the factorization
produced by these moves Un. Let Vn be the factorization obtained by performing inverse
Hurwitz moves σ−1`−p1 , σ

−1
`−p2 , . . . , σ

−1
`−pn on V . Then Un and Vn are double reverses.

Proof. Induct on n; the base case n = 0 follows from having defined U and V as double
reverses. Let k be a nonnegative integer such that the lemma holds when n = k, and
choose integers p1, . . . , pk+1 between 1 and `− 1. Let

Uk = σpkσpk−1
· · ·σp1 (U) ,

Vk = σ−1`−pkσ
−1
`−pk−1

· · ·σ−1`−p1 (V ) .

By assumption Uk and Vk are double reverses, so there exist a1, a2, . . . , a` ∈ F (X) such
that

Uk = (a1, a2, . . . , a`) ,

Vk =
(
a∗` , a

∗
`−1, . . . , a

∗
1

)
.

Now let p = pk+1, Uk+1 = σp(Uk), and Vk+1 = σ−1`−p(Vk). The Hurwitz move σp only

modifies elements at positions p and p + 1 in Uk, and σ−1`−p only modifies elements at
positions `− p and `− p+ 1 in Vk:

Uk+1 = (a1, . . . , ap−1, ap+1︸︷︷︸
p

, a−1p+1apap+1︸ ︷︷ ︸
p+1

, ap+2, . . . , a`),

Vk+1 = (a∗` , . . . , a
∗
p+2, a

∗
p+1a

∗
p

(
a∗p+1

)−1︸ ︷︷ ︸
`−p

, a∗p+1︸︷︷︸
`−p+1

, a∗p−1, . . . , a
∗
1).

Reversing the order of elements in Uk+1 and changing each ai to a∗i produces a factorization
identical to Vk+1 except at position `− p, so the two factorizations are double reverses if
factor `− p in Vk+1 is the reverse of factor p+ 1 in Uk+1. But

(a−1p+1apap+1)
∗ = a∗p+1a

∗
p

(
a−1p+1

)∗
= a∗p+1a

∗
p

(
a∗p+1

)−1
by (2) and Proposition 6.1, so Uk+1 and Vk+1 are indeed double reverses. �
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Theorem 6.6 Let G be a group given by a presentation 〈X | R〉 with reversible relations.
Let U be a length-` factorization of elements in G, and let V be a double reverse of U .
Then U and V have Hurwitz orbits of the same size.

Proof. Let OU and OV be the orbits of U and V , respectively. Suppose T ∈ OU

and T = σp1σp2 . . . σpn(U) with each pi ∈ {1, 2, . . . , ` − 1}, and define ϕ : OU → OV by
ϕ(T ) = σ−1`−p1σ

−1
`−p2 . . . σ

−1
`−pn(V ). By Lemma 6.5, T and ϕ(T ) are double reverses.

Assume A,B ∈ OU , C ∈ OV , and ϕ(A) = ϕ(B) = C. Then there exist a1, a2, . . . , a`,
b1, b2, . . . , b` ∈ Fn such that

A = (a1, a2, . . . , a`) and B = (b1, b2, . . . , b`) ,

C =
(
a∗` , a

∗
`−1, . . . , a

∗
1

)
=
(
b∗` , b

∗
`−1, . . . , b

∗
1

)
.

Since a∗i ≡ b∗i , by Proposition 6.3 ai ≡ bi, i = 1, . . . , `. Thus A = B, ϕ is injective, and
the same process gives an injective map ϕ′ : OV → OU as well. This proves |OU | = |OV |.
�

Corollary 6.7 Suppose 〈X | R〉 is a presentation for G with reversible relations, and let
xi1 , xi2 , . . . , xi` ∈ X ∪ X−1. Then (xi1 , xi2 , . . . , xi`) and (xi` , xi`−1

, . . . , xi1) have Hurwitz
orbits of the same size.

Proof. The two factorizations are double reverses because the reverse of a single letter
word is itself. �

7 Applications to reflection groups

A lot of the research done on the Hurwitz action has been on real reflection groups, and
more generally on Coxeter groups. The reflections in these groups exclusively have order
2. Therefore, by Corollary 5.2, we find that a reflection factorization (x1, x2, . . . , xn) in a
Coxeter group has the same sized Hurwitz orbit as (xn, . . . , x2, x1).

The Hurwitz action has also been studied in the context of complex reflection groups
called Shephard groups. Unlike Coxeter groups, Shephard groups can have generating
reflections of order greater than 2. Thus Corollary 5.2 is not enough to guarantee that
reversing a factorization of generators preserves Hurwitz orbit size. For each Shephard
group there exist integers p1, p2, . . . , pn and q1, q2, . . . , qn−1 such that there is a generating
set {s1, s2, . . . , sn} with relations spii = 1 for i = 1, 2, . . . , n, sisj = sjsi if |i− j| > 1, and

sisi+1sisi+1 . . . = si+1sisi+1si . . . (qi terms on each side)

for i = 1, 2, . . . , n− 1. We see with Remark 6.2 that these relations are reversible, so by
Corollary 6.7 reversing any factorization consisting of generators si in a Shephard group
preserves Hurwitz orbit size. For example, the group G6 mentioned in the introduction
is a Shephard group, with parameters n = 2, p1 = 3, p2 = 2, and q1 = 6. Yet testing of
small cases has led us to make a stronger conjecture about Hurwitz orbit sizes in G6.
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Conjecture 7.1 Let G6 = 〈a, b | a3 = b2 = 1, ababab = bababa〉, and suppose x1, x2, . . . x`
are elements of {a, b, a−1} for some positive integer `. Then for any permutation π of
{1, 2, . . . , `}, (x1, x2, . . . , x`) and (xπ(1), xπ(2), . . . , xπ(`)) have Hurwitz orbits of equal size.

With regard to this property, G6 may be unique: We found that for each exceptional
irreducible complex reflection group generated by 2 reflections a and b, excluding G6, the
factorizations (a, b, a, b) and (a, a, b, b) have Hurwitz orbits of different size.
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