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Abstract - We consider the generalized game Lights Out played on a graph and investi-
gate the following question: for a given positive integer n, what is the probability that a
graph chosen uniformly at random from the set of graphs with n vertices yields a universally
solvable game of Lights Out? When n ≤ 11, we compute this probability exactly by deter-
mining if the game is universally solvable for each graph with n vertices. We approximate
this probability for each positive integer n with n ≤ 100 by applying a Monte Carlo method
using 1,000,000 trials. We also perform the analogous computations for connected graphs.
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1 Introduction

Lights Out is an electronic one-player game played on a 5× 5 square grid of lights. Each
one of the 25 square lights, when pressed, toggles itself and each of the lights with which
it shares an edge. The goal in Lights Out is to produce a configuration in which all of the
lights are turned off.

In this work, we consider Lights Out played on an undirected graph Γ = (V,E), where
there is one light for each element of V and pressing v ∈ V toggles v and each vertex
adjacent to v. We will call C ⊆ V the initial configuration of a game of Lights Out on
Γ where C is the set of vertices that are toggled on when the game begins. Winning
Lights Out consists of finding a subset of V so that pressing the lights in that subset
toggles exactly C; indeed it is only necessary to find a subset of V and not a sequence
of that subset since the effect of pressing lights is independent of the order in which they
are pressed. If such a subset of V exists, then we say that the game is solvable. Much
is known about the solvability of particular initial configurations. For any graph Γ, if
C = V then the game is solvable, and if V is an n × n square grid with n odd and C is
only the center square, then the game is solvable [6] [9] [15] [21]. We say that Lights Out
on Γ is universally solvable if it is solvable for every initial configuration C. For example,
the 3× 3 square grid is universally solvable while the 5× 5 grid is not [21].

In [1] and [2], Amin and Slater made substantial progress determining which graphs are
universally solvable. In particular, they not only give equivalent conditions to determine
when a graph is universally solvable but also classify the paths, spiders, and caterpillars
that are universally solvable and provide a method to generate all universally solvable
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trees. The existence of so many classes of graphs that are universally solvable raises
the primary question considered in this work: if a simple graph is chosen uniformly at
random from the set of graphs with n vertices, what is the probability that it will yield
a universally solvable game of Lights Out? Since games of Lights Out on disconnected
graphs can be thought of as independent games on connected graphs, we also consider
the analogous question for connected graphs. To approach this question, we implemented
the algorithm for choosing a graph uniformly at random described by Dixon and Wilf in
[7]. Our program was written in Java and our code is available at http://github.com/

nicolemanno/Lights-Out.
This paper is organized as follows. In Section 2, we discuss the connection between

Lights Out and linear algebra and give, for each n ≤ 11, the number of graphs with n
vertices that are universally solvable. We present the algorithm that we used to select
a graph uniformly at random in Section 3 and give the results of our Monte Carlo ex-
periments. In Section 4, we discuss possible extensions of our work and interesting open
problems.

2 Lights Out and Linear Algebra

Lights Out can be studied through linear algebra by ordering the vertices of Γ. Once an
order is chosen, subsets of the vertices of Γ can be represented by column vectors. Let Γ
have n vertices and for simplicity we number the vertices from 1 to n. The subset C is
given by the n× 1 column vector

−→
b =

[
b1 b2 · · · bn

]T
,

where bi = 1 if vertex i is in C and is 0 otherwise.
The primary tool that we will use to study Lights Out is the neighborhood matrix of

the graph Γ:

Definition 2.1 Let Γ = (V,E) be a graph with n vertices labeled 1 to n. The neighbor-
hood matrix A = [ai,j] of Γ is the n × n matrix in which ai,j = 1 if i = j or if the i-th
and j-th vertices are adjacent and ai,j = 0 otherwise.

Remark 2.2 The matrix A is symmetric and the i-th row of A has a 1 in the j-th column
if and only if pressing vertex i toggles vertex j. This matrix can also be expressed as the
sum of the adjacency matrix of Γ and the n× n identity matrix.

When the column vector
−→
b represents the initial configuration of Lights Out on a graph

Γ whose vertices are labeled 1 to n, solving the game reduces to finding the vector −→x so

that A−→x =
−→
b , where all of the coefficients are in the field Z2. The initial configuration

represented by
−→
b is solvable if and only if it belongs to the column space of A [3]. This

leads to the following fundamental observation about Lights Out on Γ: [11] [12] [21] [22]

Theorem 2.3 Lights Out on a graph Γ is universally solvable if and only if the neigh-
borhood matrix of Γ is invertible.
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When A is invertible, winning the game requires pressing the vertices represented by
−→x = A−1

−→
b . Our program checks for invertibiliy by performing row reduction. Note

that the order chosen for the vertices of Γ does not affect the invertibility of A since
two different orderings give neighborhood matrices that are conjugate by permutation
matrices.

Example 2.4 Figure 1 shows labeled representatives of the six distinct unlabeled con-
nected graphs with four vertices. What follows are the neighborhood matrices correspond-
ing to these labeled graphs.
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Figure 1: Labeled representatives of the six unlabeled connected graphs with 4 vertices.


1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1




1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1




1 1 1 1
1 1 1 0
1 1 1 0
1 0 0 1




1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1




1 1 1 0
1 1 1 1
1 1 1 1
0 1 1 1




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


Row reducing each neighborhood matrix demonstrates that the only connected uni-

versally solvable graphs with 4 vertices are the four cycle and the length three path,
represented in Figure 1 by the bottom left and top middle graphs, respectively.

Using the archives of graphs and connected graphs available from [17] and [18], we ap-
plied Theorem 2.3 to determine which of these graphs correspond to universally solvable
games of Lights Out. For 1 to 10 vertices, the program took less than 5 minutes to run,
while the run time to compute results for graphs with 11 vertices was approximately 10
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hours; these computations were executed on a 2015 MacBook Pro wtih 16 GB of RAM.
The results for all graphs follow in Table 1 while the results for connected graphs are in
Table 2.

Table 1: For each n with 1 ≤ n ≤ 11, the probability that a graph chosen uniformly at
random from the set of graphs with n vertices is universally solvable.

Number Number Number of Probability
of of Universally Universally

Vertices Graphs Solvable Graphs Solvable

1 1 1 1
2 2 1 0.5
3 4 2 0.5
4 11 4 0.363636
5 34 13 0.382353
6 156 47 0.301282
7 1044 339 0.324713
8 12346 4043 0.327474
9 274668 98375 0.358160
10 12005168 4553432 0.379289
11 1018997864 403286335 0.395768

3 Algorithm for Large Numbers of Vertices

When we consider graphs with more than 11 vertices, the methods of Section 2 are
ineffective; for instance there are more than 1011 unlabeled graphs with 12 vertices. For
this reason we applied a Monte Carlo method. For each n with 1 ≤ n ≤ 100, we ran
1,000,000 trials of the experiment of selecting a graph uniformly at random from the set
of graphs with n vertices and determined if each chosen graph produced a universally
solvable game of Lights Out. To choose a graph uniformly at random, we followed the
algorithm described by Dixon and Wilf in [7]. We will review their methods below.

3.1 Selection of a Graph Uniformly At Random

Consider the action of the symmetric group Sn on the set of all labeled graphs with n
vertices where the action is given by permuting the labels. The unlabeled graphs with n
vertices are in one-to-one correspondence with orbits of this action. For g ∈ Sn, let Fix(g)
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Table 2: For each n with 1 ≤ n ≤ 11, the probability that a graph chosen uniformly at
random from the set of connected graphs with n vertices is universally solvable.

Number Number of Universally Probability
of Connected Solvable Universally

Vertices Graphs Connected Graphs Solvable

1 1 1 1
2 1 0 0
3 2 1 0.5
4 6 2 0.333333
5 21 9 0.428571
6 112 33 0.294643
7 853 290 0.339977
8 11117 3692 0.332104
9 261080 94280 0.361115
10 11716571 4454654 0.380201
11 1006700565 398728322 0.396074

be the set of fixed points of g under the action and consider the set X = {(g,Γ) | g ∈
Sn,Γ ∈ Fix(g)}. Dixon and Wilf observe that each orbit is represented the same number
of times within X. By choosing an element from each conjugacy class of Sn, each orbit is
also represented the same number of times within the subset of X corresponding to the
chosen elements of Sn. So, we can choose a graph uniformly at random by

• first choosing a conjugacy class of Sn weighted by the product of the cardinality of
its fixed point set and the number of elements in the conjugacy class,

• and then choosing a graph uniformly at random from the fixed point set of a repre-
sentative of the chosen conjugacy class.

Note that the conjugacy classes of Sn are in one-to-one correspondence with partitions
of n. More specifically, the partition [k1, k2, . . . , kn] with ki parts of size i corresponds to
the conjugacy class containing permutations with ki cycles of length i for each i with
1 ≤ i ≤ n. So, we label conjugacy classes by their corresponding partitions. Dixon and
Wilf give the conjugacy class [k1, . . . , kn] weight

w([k1, ..., kn]) =
n!2c(g)

n∏
i=1

(ikiki!)

,
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where

c(g) =
1

2

(
n∑

i=1

l(i)2φ(i)− l(1) + l(2)

)
, l(i) =

n∑
j=1, i|j

kj,

and φ is the Euler phi function. Following their algorithm, we choose a partition π of n
so that the probability of choosing [k1, . . . , kn] is equal to w([k1, . . . , kn])/n!gn, where gn
is the number of unlabeled graphs with n vertices. Our methods require knowledge of
the value of gn and this value has been computed up to n = 140 by Briggs [5] [20] using
methods of Oberschelp [19]. While it is feasible to extend our results to n = 140, as n
increases our approximations stabilize to the narrow range from 0.4185 to 0.4210 which
limits the utility of extending the computation.

We follow the suggestion of Dixon and Wilf [7] and apply results of Oberschelp [19] to
efficiently choose a partition. Within the set of partitions of n, the weight is concentrated
in the partitions with the most parts of size 1. We choose a random number ξ, such that
0 ≤ ξ < 1, and compute the probabilities of the partitions in decreasing order of number
of size 1 parts until the sum of the probabilities of the partitions that we have computed
is greater than ξ. The final partition computed, the partition whose probability made the
sum exceed ξ, is returned as π. The random method in the RandomGraph class implements
this algorithm and is available at http://github.com/nicolemanno/Lights-Out. To
create a partition of n with n− k parts of size 1, we create a partition of k with no parts
of size 1 and adjoin n− k parts of size 1 to the partition. Since the partitions of n with
more parts of size 1 usually have larger weight, k is typically small. In practice we are
able to generate all of the partitions of k in decreasing order of the largest value in the
partition, m, by recursively partitioning the remaining k−m. Within the code available at
our github page, the implementation of this algorithm is the uniquePartitions method
within the Partition class.

3.2 Choosing Graph From Fixed Point Set

Let P be the set of two element subsets of {1, 2, . . . , n}. For a graph Γ with vertices
labeled from 1 to n, the edges E of Γ are labeled as elements of P . Let g ∈ π act on
P by g · {i, j} = {g(i), g(j)}. For Γ ∈ Fix(g), each orbit in P under the action of g is
either a subset of E or disjoint from E. Selecting a graph Γ uniformly at random from
Fix(g) reduces to computing the orbits in P under the action of g and constructing Γ by
giving each orbit probability 0.5 of being in E. We compute the orbits in P under g by
exhaustively applying g to each element of P . The code for this algorithm is available at
our github page, and is implemented by the method orbits in the RandomGraph class.

3.3 Results

Following the procedure given by Dixon and Wilf in [7], our algorithms to select a parti-
tion π and graph Γ, from Subsections 3.1 and 3.2, respectively, produce a representative
labeled graph Γ of an unlabeled graph chosen uniformly from the set of graphs with n
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Table 3: For each n with 1 ≤ n ≤ 27, the probability that a graph chosen uniformly at
random from the set of graphs with n vertices is universally solvable, approximated by
1,000,000 trials. For n ≥ 11, the margin of error at 95% confidence is less than 0.001.

Number Probability Probability Number Probability Probability
of Connected Universally of Connected Universally

Vertices Solvable Vertices Solvable

1 1 1 15 0.999083 0.417295
2 0.500186 0.499814 16 0.999465 0.418368
3 0.501065 0.498932 17 0.999744 0.417804
4 0.545260 0.362558 18 0.999859 0.419841
5 0.617609 0.382157 19 0.999926 0.419059
6 0.717691 0.301979 20 0.999974 0.419294
7 0.817183 0.324418 21 0.999984 0.420138
8 0.900342 0.328411 22 0.999988 0.419788
9 0.950290 0.357775 23 0.999994 0.419580
10 0.975863 0.378710 24 0.999999 0.419234
11 0.987933 0.395842 25 1 0.419309
12 0.993693 0.405955 26 0.999998 0.419638
13 0.996637 0.411057 27 0.999999 0.419374
14 0.998301 0.414513

vertices. As discussed in Section 2, we check if Γ is universally solvable by row reducing
its neighborhood matrix.

For each n from 1 to 27, we ran 1,000,000 experiments where we chose a graph with n
vertices uniformly at random and determined if it was universally solvable. We also com-
puted the probability of a graph with n vertices being connected when chosen uniformly
at random. These results are shown in Table 3. For those same values of n, we also ran
1,000,000 experiments where we chose a connected graph with n vertices uniformly at
random and determined if it was universally solvable. We accomplished this by choosing
a graph with n vertices uniformly at random and re-running the experiment if the chosen
graph was not connected. We checked if the graph is connected by starting at node 1
and performing a depth first traversal of the spanning tree of the graph made by visiting
the previously unvisited adjacent vertex with smallest numerical label. If every vertex in
the graph had been visited by the end of the traversal, then the graph was connected.
Within the code available at our github page, the traverse and isConnected methods in
the MatrixGenerator class implement this algortihm. Our results for connected graphs
with n from 1 to 27 are shown in Table 4. For each n from 28 to 100, we did not handle
the connected case separately. As n approaches∞, the probability that the chosen graph
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Table 4: For each n with 1 ≤ n ≤ 27, the probability that a graph chosen uniformly at
random from the set of connected graphs with n vertices is universally solvable, approxi-
mated by 1,000,000 trials. For n ≥ 11, the margin of error at 95% confidence is less than
0.001.

Number Probability Number Probability
of Universally of Universally

Vertices Solvable Vertices Solvable

1 1 15 0.417291
2 0 16 0.418391
3 0 .499886 17 0.417805
4 0.332844 18 0.419837
5 0.428600 19 0.419054
6 0.294965 20 0.419296
7 0.340211 21 0.420136
8 0.333021 22 0.419794
9 0.360898 23 0.419580
10 0.379616 24 0.419235
11 0.396218 25 0.419309
12 0.406112 26 0.419638
13 0.411093 27 0.419373
14 0.414537

is connected approaches 1. For each of these values of n, all 1,000,000 graphs chosen
uniformly at random were connected, and we determined if each of the 1,000,000 chosen
graphs was universally solvable. We present our results for these values in Table 5.

For values of n ≥ 11, our sample size is small relative to the set of all graphs with
n vertices; we can assume that our experiment produces a binomial distribution giving a
margin of error of less than 0.001 at 95% confidence. As confirmation of the correctness of
our algorithms and implementation, observe that for values of n from 1 to 11, our results
in Tables 3 and 4 closely match the results in Section 2. Additionally, for each n from 1
to 27, the probability that a graph chosen uniformly at random from the set of graphs
with n vertices is connected, as given in Table 3, agrees with known values [5].

The runtime for the results displayed in Tables 3 and 4 was 30 minutes, while it took
48 hours to compute the results for Table 5. These computations were performed on a
laptop with a 2.80 GHz processor and 16 GB of RAM running Windows 11.
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Table 5: For each n with 28 ≤ n ≤ 100, the probability that a graph chosen uniformly
at random from the set of graphs with n vertices is universally solvable, approximated by
1,000,000 trials; all graphs chosen were incidentally connected. For each n, the margin of
error at 95% confidence is less than 0.001.

Number Probability Number Probability Number Probability
of Universally of Universally of Universally

Vertices Solvable Vertices Solvable Vertices Solvable

28 0.419273 53 0.419991 78 0.419690
29 0.419329 54 0.419592 79 0.418720
30 0.419358 55 0.420166 80 0.419922
31 0.419409 56 0.420290 81 0.419727
32 0.419396 57 0.418865 82 0.419339
33 0.418807 58 0.419681 83 0.419351
34 0.419929 59 0.419318 84 0.420456
35 0.418619 60 0.419115 85 0.419437
36 0.419861 61 0.418608 86 0.419870
37 0.420124 62 0.418717 87 0.419644
38 0.419721 63 0.419397 88 0.418764
39 0.419141 64 0.419275 89 0.419063
40 0.420303 65 0.419000 90 0.419413
41 0.419691 66 0.419709 91 0.418826
42 0.419005 67 0.419992 92 0.419806
43 0.419342 68 0.418893 93 0.420023
44 0.419507 69 0.419053 94 0.420860
45 0.419345 70 0.420118 95 0.420415
46 0.420292 71 0.419159 96 0.418757
47 0.419140 72 0.419537 97 0.419563
48 0.418924 73 0.418961 98 0.419010
49 0.418542 74 0.419708 99 0.419510
50 0.418690 75 0.419446 100 0.419362
51 0.419030 76 0.419571
52 0.419023 77 0.419299

4 Future Work

There are a number of potential extensions of this work. Variants of Lights Out with
more than one toggle mode have been considered by many authors [4] [8] [10] [14] [16]
[23]. It is possible to extend our results in this direction.

Instead of choosing a graph uniformly at random from the set graphs with n vertices,
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one could restrict the set of graphs under consideration to those with m edges and n
vertices. Fixing n and examining how the probability of choosing a universally solvable
graph changes as m changes is an interesting direction to extend this work.

Our work suggests that as n approaches∞, the probability that a graph with n vertices
chosen uniformly at random is universally solvable is approximately 0.419. This is only
an approximation and conjecture, investigating this is an intriguing open problem.
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