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Abstract - Random matrix theory successfully models many systems, from the energy
levels of heavy nuclei to zeros of L-functions. While most ensembles studied have continuous
spectral distribution, Burkhardt et al. introduced the ensemble of k-checkerboard matrices,
a variation of Wigner matrices so that entries in a checkerboard pattern are some fixed
constant. In this family, N − k of the eigenvalues are of size O(

√
N) and were called bulks

while the rest are tightly contrained around certain multiples of N and were called blips.
We extend their work by allowing the fixed entries to take different constant values. We

can construct ensembles with blip eigenvalues at any multiples of N we want and with any
multiplicity. For example, we can have the blips occur at sequences such as the primes or the
Fibonaccis. The presence of multiple blips creates technical challenges to separate them and
to look at only one blip at a time. We overcome this by choosing a suitable weight function
which allows us to localize at each blip, and then exploiting cancellation to deal with the
resulting combinatorics to determine the average moments of the ensemble; we then apply
standard methods from probability to prove that almost surely the limiting distributions of
the matrices converge to the average behavior as the matrix size tends to infinity. For blips
with just one eigenvalue in the limit we have convergence to a Dirac delta spike, while if
there are k eigenvalues in a blip we again obtain hollow k × k GOE behavior.
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1 Introduction

1.1 Background

Initially introduced by Wishart [8] for some problems in statistics, random matrix theory
has successfully modeled a large number of systems from energy levels of heavy nuclei to
zeros of the Riemann zeta function. A simple but important example is the ensemble of
real symmetric matrices whose upper triangular entries are independent, identically dis-
tributed random variables from some fixed probability distribution with mean 0, variance
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of Michigan, the University of Notre Dame, Pomona College and Williams College.
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1 and finite higher moments. Wigner’s semi-circle law states that as the size of the ma-
trix N →∞, the properly normalized spectral distribution of a matrix from the ensemble
converges almost surely to semi-circle law (or semi-ellipse):

σR(x) =

{
2

πR2

√
R2 − x2 if |x| ≤ R,

0 if |x| > R.
(1)

See [7] for more details.
Besides the more well-known families such as the Gaussian Orthogonal, Unitary and

Symplectic Ensembles, many other special ensembles have been studied; see for example
[1], where the additional structures on the entries of the matrices lead to different behaviors
of the eigenvalues in the limit.

For most ensembles that people have studied, while it is possible to prove the conver-
gence of the limiting spectral measure, in only a few (such as d-regular graphs [6], block
circulant matrices [4] and palindromic Toeplitz matrices [5]) can the limiting distribution
be written down in a nice, closed form expression.

This paper is a sequel to [2], where they introduce ensembles of checkerboard matrices
which also have a nice, closed-form expression for their limiting distribution. The spec-
trum splits into two; N −k of the eigenvalues are of size

√
N (called the bulk eigenvalue)

and converges to a semicircle, while k of the eigenvalues (called the blip eigenvalues) are
of order N and converge to the spectral distribution of a k×k hollow Gaussian orthogonal
ensemble.

1.2 Generalized Checkerboard Ensembles

We generalize [2] by allowing the constant w to take different values. While the Checker-
board ensembles in [2] only allow one blip for each ensemble, the generalized Checkerboard
ensembles allow arbitrarily many blips for each ensemble. Moreover, we have control over
the positions of these blips. That is, given a list of points, the generalized checkerboard
ensemble allows the spectrum at those points in a “non-trivial” way. We can always
“trivially” construct ensembles with prescribed locations and frequency by taking a diag-
onal union of block matrices. But then the blocks are independent from each other. The
significance of the generalized checkerboard ensemble is that we can control the locations
of normalized eigenvalues within an ensemble that doesn’t have independent diagonal
blocks. It is a “mixed” matrix whose eigenvalues have a nice split limiting distribution.

Definition 1.1 Fix k ∈ N and a k-tuple of real numbers W = (w1, . . . , wk). The N ×N
(k,W )-checkerboard ensemble is the ensemble of matrices AN = (mij) given by

mij =

{
aij ifi 6≡ j (mod k),

wu ifi ≡ j ≡ u (mod k), with u ∈ {1, 2, . . . , k},
(2)

where aij = aji are independent and identically distributed random variables with mean 0,
variance 1, and finite higher moments.
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1.3 Results

What makes the checkerboard ensemble in [2] interesting is that the eigenvalues of a matrix
from the ensemble almost surely fall into two separate regimes. With our generalization
we can exploit the freedom to choose different constants to force the eigenvalues to fall
into more regimes.

Theorem 1.2 Let {AN}N∈N be a sequence of (k,W )-checkerboard matrices. Suppose that
W has x non-zero entries and there are s distinct w’s, then almost surely as N →∞, the
eigenvalues of AN fall into s+ 1 regimes: N − x of the eigenvalues are O(N1/2+ε) and if
w′i appears ki times, ki eigenvalues are of magnitude Nw′i/k +O(N1/2+ε).

As in [2], we refer to the N − x eigenvalues that are on the order of
√
N as the

eigenvalues in the bulk, while for each distinct wi, the ki eigenvalues near Nwi/k are
called the eigenvalues in the blips. We study the eigenvalue distribution of each regime.

For the remainder of this paper, AN always refers to an N ×N matrix.
Let νAN be the empirical spectral measure of AN , where we have normalized the

eigenvalues by dividing by
√
N :

νAN (x) =
1

N

∑
λ an eigenvalue of AN

δ

(
x− λ√

N

)
. (3)

For example, Figure 1 gives this normalized eigenvalue distribution of a collection of
500× 500 (6,W )-checkerboard matrices with W = (1,−2,−2, 3, 3, 3).

Figure 1: A histogram of the normalized eigenvalue distribution on a probability density
scale for 500 × 500 (6,W )-checkerboard real matrices with W = (1,−2,−2, 3, 3, 3) after
500 trials.

Taking ÃN to be the fixed matrix with entries mij = wu whenever i ≡ j ≡ u (mod k)
and zero otherwise, we have that the limiting spectral distribution (LSD) of the (k,W )-
checkerboard ensemble is the same as the LSD of the ensemble with W = 0, which does
not have the k large blip eigenvalues . This overcomes the issue of diverging moments.
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Theorem 1.3 Let {AN}N∈N be a sequence of N ×N (k,W )-checkerboard matrices, and
let νAN denote the empirical spectral measure. Then, νAN converges weakly almost surely
to the Wigner semicircle measure σR with radius

R = 2
√

1− 1/k. (4)

The proof is by standard combinatorial arguments similar to the one in [2]. Weyl’s
Inequality [3] implies that if the spectral radius of P is O(f) then the size of the pertur-
bations are O(f) as well. Hence it suffices to demonstrate that almost surely the spectral
radius of a sequence of (k, 0)-checkerboard matrices is O(N1/2+ε).

Let AN be a (k, 0)-checkerboard matrix. By Remark A.3 in [2] we have that
Var(Tr(A2m

N )) = O(N2m) and by the proof of Lemma 2.1 in [2]
we get E [Tr(A2m

N )] = O(Nm+1).
Since Lemma B.2 in [2] holds for all m ∈ Z+, we have that almost surely ‖AN‖op is

O(N1/2+ε). Together with and Weyl’s Inequality, we obtain Theorem 1.2
Similar to the previous checkerboard paper [2], each blip may be thought of as devia-

tions about the trivial eigenvalues. Instead of having just one blip as in [2], we now have
many different blips. A blip containing ki > 1 eigenvalues has the same distribution as
the eigenvalues of the ki× ki hollow Gaussian Orthogonal Ensemble defined below; when
ki = 1 the blip has the distribution of a dirac delta function.

Definition 1.4 The k×k hollow Gaussian Orthogonal Ensemble is given by k×k
matrices A = (aij) = AT with

aij =

{
NR(0, 1) if i 6= j

0 if i = j.
(5)

We need to define a weighted blip spectral measure which takes into account only the
eigenvalues of one blip. Thus we not only need to get rid of the interference from the
bulk, we also need to avoid the interference from the other blips. In order to facilitate
the use of eigenvalue trace lemma, similar to [2], we are led to use a polynomial weighting
function and we use a sequence of polynomials of degree tending to infinity as the matrix
size N →∞ so that in the limit we mimic a smooth cutoff function. Specifically, let

f 2n
i (x) :=

(
x(2− x)

∏
wj 6=wi(x−

wj
wi

)(2− x− wj
wi

)∏
wj 6=wi(1−

wj
wi

)2

)2n

. (6)

Thus we alter the standard empirical spectral measure in the following way to capture
the blip.

Definition 1.5 Given k ∈ N and a k-tuple of real numbers W = (w1, . . . , wk), the em-
pirical blip spectral measure associated to an N ×N (k,W )-checkerboard matrix AN
around Nwi/k 6= 0 is

µAN ,i(x) :=
1

ki

∑
λ an eigenvalue of A

f 2n
i

(
kλ

wiN

)
δ

(
x−

(
λ− wiN

k

))
, (7)
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where ki is the number of wi’s in (w1, . . . , wk), where n(N) is a function satisfying
lim
N→∞

n(N) =∞ and n(N) = O(log logN).

Remark 1.6 The actual choice of weight functions should not change the empirical blip
spectral measure in the limit. It will be used in the proof that the weight polynomial
f 2n
i (x) has a critical point at 1 with f 2n

i (1) = 1 and has zeroes of order 2n at 0 and
at all wj/w1 with wj 6= w1. Heuristically, because the fluctuation of eigenvalues in each

regime is of order
√
N , we have f 2n

i

(
kλ
wiN

)
≈ 1 if λ is in the blip around Nwi/k, and

f 2n
i

(
kλ
wiN

)
≈ 0 if λ is in the bulk or in the blip other than Nwi/k. More specifically,

f 2n
i

(
kλ

wiN

)
=

O
(
logN
Nn

)
if λ is O

(√
N
)

or
Nwj
k

+O
(√

N
)

with wj 6= wi,

1 +O
(
logN
N2n

)
if λ is Nwi

k
+O

(√
N
)
.

(8)

As in [2], we use the method of moments to relate the expected moments of the
empirical blip measure around Nwi/k to those of the ki × ki hollow GOE.

In particular, when there is only one eigenvalue in a blip, we obtain the following.

Theorem 1.7 Fix k ∈ N and a k-tuple of real numbers W = (w1, . . . , wk) where wi 6= 0
and there is exactly one wi in W . Let {AN}N∈N be a sequence of (k,W )-checkerboard ma-
trices. Then the associated empirical blip spectral measure µAN ,i around Nwi/k converges
weakly to the Dirac delta distribution centered at Nwi

k
+ k−1

wi
.

Thus, when ki = 1, we expect an eigenvalue of magnitude exactly Nwi
k

+ k−1
wi

as N →∞.
In general, when ki > 1, the empirical blip spectral measure of one matrix AN around
Nwi/k no longer converges to the expected value, as the variances of the moments do
not necessarily converge to zero as N → ∞. Thus, we follow [2] to modify the moment
convergence theorem and average over the eigenvalues of multiple independent matrices.

Definition 1.8 Fix k ∈ N, a k-tuple of real numbers W = (w1, . . . , wk), and a function
g : N→ N. The averaged empirical blip spectral measure around Nwi/k associated

to a g(N)-tuple of N ×N (k,W )-checkerboard matrices (A
(1)
N , A

(2)
N , . . . , A

(g(N))
N ) is

µ
i,g,A

(1)
N ,A

(2)
N ,...,A

(g(N))
N

:=
1

g(N)

g(N)∑
j=1

µ
A

(j)
N ,i

. (9)

Theorem 1.9 Fix k ∈ N, a k-tuple of real numbers W = (w1, . . . , wk). Let g : N→ N be

such that there exists a δ > 0 for which g(N) � N δ. Let A(j) = {A(j)
N }N∈N be sequences

of fixed N ×N matrices, and let A = {A(j)}j∈N be a sequence of such sequences. Then, as
N →∞, the averaged empirical blip spectral measures µ

i,g,A
(1)
N ,A

(2)
N ,...,A

(g(N))
N

around Nwi/k

of the (k,W )-checkerboard ensemble over R converge weakly almost-surely to the measure
with moments equal to the expected moments of the standard empirical spectral measure
of the ki × ki hollow Gaussian Orthogonal Ensemble, where ki is the number of wi in W .

the pump journal of undergraduate research 4 (2021), 202–221 206



Theorem 1.9 can be proven using the exactly same method as in [2]. Thus we omit
the proof here. See [2] for the detail of the proof.

In conclusion, we can construct an expanding family to have blips of any desired finite
size at any sequence of positions after normalization. Moreover, we extend [2] by showing
that the averaged empirical blip spectral measure around Nwi

k
converges to a ki×ki hollow

Gaussian with its mean k−1
wi

independent of the choice of all the constants wj 6= wi. This
means that the distribution of different blips don’t interfere with each other. When the
blip has size ki = 1, we get weak convergence of empirical blip spectral measure around
Nwi
k

to a Dirac Delta distribution.
The paper is organized as follows. In §2 we prove our claims concerning the eigenvalues

in the blip. We then prove results on the convergence to the limiting spectral measure in
§3.

2 The Blip Spectral Measure

In this section, we study the distribution of the eigenvalues at the blips. First, the weight
function (6) defined in section 1 enables us to focus on just one blip at a time. Then, we
reduce the general cases to the case where all wj 6= wi are zero. Finally, we show that the
distribution in the special case is hollow k1 × k1 gaussian following an argument similar
to the one in [2].

Without loss of generality, we focus on the blip around Nw1/k 6= 0 and use the
polynomial weight function

f 2n
1 (x) =

(
x(2− x)

∏
wj 6=w1

(x− wj
w1

)(2− x− wj
w1

)∏
wj 6=w1

(1− wj
w1

)2

)2n

. (10)

As discussed in Remark 1.6, our choice of weight functions does not affect our results as
long as the functions

1. are essentially 1 close to 1, and

2. vanish to sufficiently high order at 0 and all wj/w1.

This two requirement ensures that any contribution from the eigenvalues within the bulk
and the other blips are removed.

Definition 2.1 The empirical blip spectral measure associated to an N × N k-
checkerboard matrix AN around Nw1/k is

µAN ,1(x) :=
1

k1

∑
λ an eigenvalue of A

f 2n
1

(
kλ

w1N

)
δ

(
x−

(
λ− w1N

k

))
, (11)

where k1 is the number of w1’s in (w1, . . . , wk), and n(N) is a function which satisfies
lim
N→∞

n(N) =∞ and n(N) = O(log logN).
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Because the fluctuation of the location of the eigenvalues in each regime is of order√
N , the modified spectral measure of Definition 2.1 weights eigenvalues within this blip

by almost exactly 1 and those in the bulk and the other blips by almost exactly zero.

For fixed N , the polynomial f 2n
1 can be written as f 2n

1 (x) =
4nl∑
α=2n

cαx
α, where l is the

number of distinct constants in (w1, . . . , wk) and all cα ∈ R.
We apply the method of moments to the modified spectral measure (11). By the

eigenvalue trace formula and linearity of expectation, the expected m-th moment of the
empirical blip spectral measure is

E
[
µ
(m)
AN ,1

]
= E

[
1

k1

∑
λ

4nl∑
α=2n

cα

(
kλ

w1N

)α(
λ− w1N

k

)m]

= E

[
1

k1

4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
Tr(Aα+iN )

)]

=
1

k1

4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
E
[
Tr(Aα+iN )

])
. (12)

Recall that

E
[
Tr(Aα+iN )

]
=

∑
1≤j1,...,jα+i≤N

E
[
mj1j2mj2j3 · · ·mjα+ij1

]
. (13)

The calculation of the moment has been transformed into a combinatorial problem of
counting different types of products of entries. We follow the vocabulary from [2] to
describe the combinatorics problem.

Definition 2.2 A block is a set of adjacent a’s surrounded by w’s in a cyclic product,
where the last entry of a cyclic product is considered to be adjacent to the first. We refer
to a block of length ` as an `-block or sometimes a block of size `.

Definition 2.3 A configuration is the set of all cyclic products for which it is specified
(a) how many blocks there are, and of what lengths, and (b) in what order these blocks
appear (up to cyclic permutation); However, it is not specified how many w’s there are
between each block.

Definition 2.4 A congruence configuration is a configuration together with a choice
of the congruence class modulo k of every index.

Definition 2.5 Given a configuration, a matching is an equivalence relation ∼ on the
a’s in the cyclic product which constrains the ways of indexing (see Definition 2.6) the a’s
as follows: an indexing of a’s conforms to a matching ∼ if, for any two a’s ai`,i`+1

and
ait,it+1, we have {i`, i`+1} = {it, it+1} if and only if ai`i`+1

∼ ait,it+1. We further constrain
that each a is matched with at least one other by any matching ∼.
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Definition 2.6 Given a configuration, matching, and length of the cyclic product, then
an indexing is a choice of

1. the (positive) number of w’s between each pair of adjacent blocks (in the cyclic
sense), and

2. the integer indices of each a and w in the cyclic product.

We see that the congruence classes of the indices of the a’s determine which congruence
classes of the indices of the w’s belong to, and thus which wj’s appear between the blocks.

2.1 Reducing to the case where all wj 6= w1 are zero

We prove that if there is some wj 6= w1 in a fixed congruence configuration, then it does
not contribute to the expected moment (12) in the limit.

We begin by analyzing the form of the summands in the total contribution of a con-
gruence configuration in Lemma 2.8. The following lemma helps us to derive this form,
and its proof is provided in Appendix A.

Lemma 2.7 Fix s ∈ N with s ≥ 2 and some polynomial p(x1, . . . , xs) ∈ R[x1, . . . , xs] of
degree q. For η ∈ N with η ≥

∑s
i=1 yi and distinct w1, . . . , ws, we have

∑
x1+···+xs=η

xi≥yi

p(x1, . . . , xs)w
x1
1 · · ·wxss =

∑s
l=1w

η+2−
∑s
i=1 yi

l fl,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q , (14)

where each fl,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws] is a homogeneous polynomial in w1, . . . , ws
of degree 2q

(
s
2

)
+(
∑s

i=1 yi)−2. Moreover, the coefficients in the polynomial fl,η(w1, . . . , ws)
are polynomials in η of degree ≤ q.

Lemma 2.8 Fix a congruence configuration and a matching. We have that the contribu-
tion to E

[
Tr(Aα+iN )

]
is a sum of terms of the form

p(α + i)wα+i−γj

(
N

k

)α+i−t
(15)

where p is a polynomial of degree ≤ β − s + 1, β is the number of blocks determined
by the configuration, s is the number of distinct constants w’s determined by the chosen
congruence classes, and t is the lost degrees of freedom determined by the matching.

Proof. Suppose that the distinct constants wj1 , wj2 , . . . , wjs appear in the configuration,
where each wjq appears xq times and the xq wjq ’s are separated by the blocks into yq parts.
There are

(
xq−1
yq−1

)
ways to put xq wjq into yq gaps. Note that E

[
mj1j2mj2j3 · · ·mjα+ij1

]
=

wx1j1 x
x2
j2
· · ·wxsjsA, where A is some constant determined by the matching.
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Denote the number of a’s in this configuration by r, then
∑s

l=1 xl = α + i − r and
there are ∑

xi≥yi
x1+···+xs=α+i−r

s∏
q=1

(
xq − 1

yq − 1

)
w
xq
jq

(16)

ways to place the constants wj1 , wj2 , . . . , wjs . For fixed y1, . . . , ys, we can write (16) as∑
xi≥yi

x1+···+xs=α+i−r

g̃y1,...,ys(x1, . . . , xs)w
x1
j1
wx2j2 · · ·w

xs
js

(17)

where g̃y1,...,ys(x1, . . . , xs) ∈ R[x1, . . . , xs] is a polynomial in x1, . . . , xs of degree
∑s

q=1(yq−
1) = (y1 + · · ·+ ys)− s = β − s. By Lemma 2.7, we can write (17) as a sum of the terms
of the form

w
α+i−r+2−

∑s
i=1 yi

j p̃(α + i− r) = p̃(α + i− r)wα+i−r+2−β
j (18)

where p̃(x) ∈ R[x] is a polynomial of degree ≤ β − s.
Recall that β, r are constants fixed by the configuration. Taking into account cyclic

permutation, the contribution is a sum of the terms of the form

p(α + i)wα+i−γj

(
N

k

)α+i−t
where p(x) ∈ R[x] is a polynomial of degree ≤ β − s + 1, γ ∈ Z and

(
N
k

)α+i−t
is from

choosing the indices from given equivalence classes modulo k. �
Observe that in (13) there are (α + i) degrees of freedom in choosing j1, . . . , jα+i.

Whenever the lost degrees of freedom t ≥ m+ 1, we have

4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
Nα+i−t

)

= Nm−t

(
4nl∑
α=2n

cα

(
k

w1

)α)( m∑
i=0

(
m

i

)(
−w1

k

)m−i)

� N−1
∣∣∣∣f1( k

w1

)∣∣∣∣2n , (19)

then since we have required n(N) = O(log logN), we only need to consider the contribu-
tion from E

[
Aα+iN

]
that loses at most m degrees of freedom.

Remark 2.9 Even though each term contributes O(1/N), the contribution adds up to
cn(N)/N for some c ∈ R. Thus, in order to remove the contributions from configurations
with more than m blocks in this way, we have to require n = o(logN), so we correct the
assumed growth rate n(N)� N ε in [2].

We cite the following lemma from [2], which relates the number of blocks to the lost
degree of freedom.
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Lemma 2.10 ([2]) Fix the number of blocks β, and consider all classes with β blocks.
Then the classes among these with the highest number of degrees of freedom are exactly
those which contain only 1- or 2-blocks, 1-blocks are matched with exactly one other 1-
block, and both a’s in any 2-block are matched with their adjacent entry and no others.

Remark 2.11 In [2], they prove Lemma 2.10 by showing that the average number of
degrees of freedom lost per block is at least 1, and that the average number of degrees
of freedom lost per block is 1 if and only if we have the configurations and matchings
specified in Lemma 2.10.

By Lemma 2.10, we can restrict ourselves to the configurations that have no more
than m blocks.

The following lemma allows us to cancel the contributions from the congruence config-
urations that contain some constants wj 6= w1 and reduce the general case to the special
one where all the constant wj 6= w1 are zero.

Lemma 2.12 Suppose the polynomial f(x) :=
∑

α cαx
α ∈ R[x] has a zero of order n > 0

at x0. Then for any polynomial p of degree d < n,∑
α

cαx
α
0p(α) = 0. (20)

Proof. The polynomial fd(x) :=
∑

α cαx
ααd has a zero of order (n− d) at x0 from the

fact that

fd(x) = xf ′d−1(x) (21)

for all d ∈ N with d < n. �
We are now ready to show that the contributions from the congruence configurations

that contain some constants wj 6= w1 cancel.
Given any polynomial p(x) ∈ R[x] and γ, t ∈ Z, notice the following.

1. If wj 6= w1, wj 6= 0, and p has degree less than 2n, then

4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
p(α + i)wα+i−γj

(
N

k

)α+i−t)

=
kt

wγjN
t

4nl∑
α=2n

cα

(
wj
w1

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
p(α + i)

(
wjN

k

)i)

=
kt

wγjN
t

m∑
i=0

(
m

i

)(
−w1N

k

)m−i(
wjN

k

)i 4nl∑
α=2n

cα

(
wj
w1

)α
p(α + i)

= 0, (22)

where we get
∑4nl

α=2n cα(
wj
w1

)αp(α + i) = 0 from Lemma 2.12 using the fact that

f 2n
1 (x) =

∑4nl
α=2n cαx

α ∈ R[x] has a zero of order 2n at wj/w1.
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2. If wj = w1, and p has degree less than m, then

4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
p(α + i)wα+i−γ1

(
N

k

)α+i−t)

=
kt−m

wγ−m1 N t−m

4nl∑
α=2n

cα

(
m∑
i=0

(
m

i

)
(−1)m−ip(α + i)

)
= 0, (23)

where we get
∑m

i=0

(
m
i

)
(−1)m−ip(α + i) = 0 from Lemma 2.12 using the fact that

(x− 1)m has a zero of order m at 1.

By Lemma 2.8, we know given a configuration with β blocks, the polynomial p in
the contribution (15) has degree ≤ β − s + 1 where s the number of distinct w’s in this
configuration determined by the chosen congruence classes. In particular, given β ≤ m,
the polynomial p has degree ≤ m−1+1 = m, and whenever both w1 and wj 6= w1 appear
in the configuration, the polynomial p has degree ≤ m− 2 + 1 = m− 1.

From (22) and (23), we conclude that the configurations with some wj 6= w1 do not
contribute to the moment. We may therefore assume that all all wj 6= w1 are zero.

2.2 The special case where all wj 6= w1 are zero

We have reduced to the special case where k1 of the wj’s are w1 and the rest k− k1 are 0.
Following the arguments in §3 of [2], we can show that the contributions to the m-th

moment from all configurations with fewer than m blocks cancel, and the contributions
from all configurations with matchings that lose more than m degrees of freedom be-
come insignificant as N → ∞. In particular, by Lemma 2.10, we are only left with the
configurations with m blocks.

Proposition 2.13 Fix the number of blocks β, the total contribution of configurations
with m1 1-blocks to E

[
Tr(Aα+iN )

]
is

w
α+i−m1−2(β−m1)
1

(
(α + i)β

β!
+ p̃(α + i)

)(
β

m1

)
(k − 1)β−m1Ek1 [Tr(Bm1)]

(
N

k

)α+i−β
+Oβ

(
(α + i)β

(
N

k

)α+i−β−1)
(24)

where p̃ is a polynomial of degree ≤ β − 1.

The proof follows closely from that of Proposition 3.15 in [2], and is given in Appendix
B.

Proposition 2.14 The expected m-th moment in the limit is

lim
N→∞

E
[
µ
(m)
AN ,1

]
=

1

k1

m∑
m1=0

(
m

m1

)(
k − 1

w1

)m−m1

Ek1 [Tr(Bm1)] . (25)
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The proof follows closely from that of Theorem 3.18 in [2], and is given in Appendix C.
Note that the expected first moment in the limit is

lim
N→∞

E
[
µ
(1)
AN ,1

]
=

k − 1

w1

. (26)

Following the same calculation as in Theorem 3.18 of [2], we obtain the centered m-th
moment

µmc,1 := lim
N→∞

E
[∫

(x− µ(1)
AN ,1

)mdµAN,1

]
=

1

k1
Ek1 [Tr(Bm)] . (27)

3 Weak convergence for blip of size 1

In this section we use the standard technique to show weak convergence for a blip of size
one.

Definition 3.1 (Weak Convergence). A family of probability distribution µn weakly con-
verges to µ if and only if for any bounded, continuous f we have

lim
n→∞

∫ ∞
−∞

f(x)µn(dx) =

∫ ∞
−∞

f(x)µ(dx).

Since µ
(m)
AN ,1

is finite, to prove weak convergence we prove the variance of expected mth

moment tends to zero as N goes to infinity. That is,

lim
N→∞

E[(µ
(m)
AN ,1

)2]− E[(µ
(m)
AN ,1

)]2 = 0.

By (12), we have that

E[(µ
(m)
AN ,1

)2] =
1

k21

4nl∑
α=2n

4nl∑
β=2n

cαcβ

m∑
i=0

m∑
j=0

(
m

i

)(
m

j

)
(−1)i+j(

w1N

k
)2m−(i+j)−(α+β)∑

Ci+α
Cj+β

E[Ci+αCj+β]

 , (28)

E
[
µ
(m)
AN ,1

]2
=

1

k21

4n∑
α=2n

4n∑
β=2n

cαcβ

m∑
i=0

m∑
j=0

(
m

i

)(
m

j

)
(−1)i+j

(
w1N

k

)2m−(i+j)−(α+β)

∑
Ci+α,
Cj+β

E [Ci+α]E [Cj+β]

 , (29)
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where Ct denotes the cycle mi1i2mi2i3 . . .miti1 Notice that the difference cancels unless
there exists at1t2 such that at1t2 ∈ Ci+α and Cj+β. Therefore we only need to count the
pair of cycles where Ci+α and Cj+β has at least one common a. We call such pair of cycles
the crossover terms.

Lemma 3.2 The contributions of crossover terms to E[(µ
(m)
AN ,1

)]2 is 0 as N →∞.

Proof. E[(µ
(m)
AN ,1

)]2 is the product of

1

k1

4nl∑
α=2n

cα

m∑
i=0

(
m

i

)
(−1)m−i(

w1N

k
)m−i−α

∑
Ci+α

E[Ci+α]

and
1

k1

4nl∑
β=2n

cβ

m∑
i=0

(
m

j

)
(−1)m−j(

w1N

k
)m−j−β

∑
Cj+β

E[Cj+β].

Suppose we fix a pair of congruence configurations of Ci+α and Ci+α such that there
is a common at1t2 in the two cycles, and Ci+α has b1 blocks while Cj+β has b2 blocks. If
either of b1, b2 is less than m, then by 22 and 23 their product makes 0 contribution. So
we know the that configuration contributes only when b1 + b2 ≥ 2m. By Lemma 2.10,
each block loses at least 1 degree of freedom. However, due to the common at1t2 of Ci+α
and Cj+β, there is a block that loses at least 2 degrees of freedom, so in total at least
b1+b2+1 ≥ 2m+1 degree of freedom is lost. Thus by (19), the crossover terms contribute
to 0 when N →∞. �
Now it is sufficient to look at the contribution from crossovers to E[(µ

(m)
AN ,1

)2]. For general
k1, the contributions of the crossovers doesn’t necessarily go to 0 as N → ∞. We want
to show that for k1 = 1, the contribution from the crossovers does go to 0. In order to
show this, we first reduce the general W to the simplest case where all wj 6= w1 are zero.

Lemma 3.3 The contribution from the congruence configurations that contain wj 6= w1

to E[(µ
(m)
AN ,1

)2] is 0.

Proof. Fix a pair of congruence configuration. Say wi1 , wj2 , . . . , wjs appears in the
cyclic product Ci+α and wjq appears xq times, separated by the blocks into yq parts, and
wj′1 , . . . , wj′s′ appears in the cyclic product Cj+β, wj′q appears x′q′ times and are separated
by the blocks into yq′ parts. The sum of y’s should be the total number of blocks, so we
have y1 + · · · + ys + y′1 + · · · + y′s′ = b1 + b2. By Lemma 2.10, the total lost degree of
freedom is at least b1 + b2. On the other hand, by (19) we know that the total lost of
degree of freedom should be at most 2m. Therefore we have b1 + b2 ≤ 2m.

By Lemma 2.8, with the congruence configuration fixed, the total number of ways to
place wj and wj′ is

(α + i)
∑
xi≥yi

x1+···+xs=α+i−r1

s∏
q=1

(
xq − 1

yq − 1

)
w
xq
jq

(β + j)
∑
x′
i′≥y

′
i′

x′1+···+x′s′=β+i−r2

s′∏
q′=1

(
x′q′ − 1

y′q′ − 1

)
w
x′q
j′q

(30)
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where r1, r2 are the number of a in each cycle. Since yi, y
′
i′ are fixed, the above expression

can be written as

(α + i)
∑
xi≥yi

x1+···+xs=α+i−r1

py1,...,ys(x1, . . . , xs)w
x1
j1
· · ·wxsjs (β + j)

·
∑
x′
i′≥y

′
i′

x′1+···+x′s′=β+i−r2

py′1,...,y′s′ (x
′
1, . . . , x

′
s′)w

x′1
j′1
· · ·wx

′
s′
j′
s′

(31)

where py1,...,ys and py′1,...,y′s′ are polynomials with variables xi, x
′
i′ , and the sum of their

degree is y1 + · · · + ys + y′1 + · · · + y′s′ − s − s′ = b1 + b2 − s − s′. Then (31) is a sum of
terms of the form p1(α+ j)wα+j−γ1j p2(β + i)wβ+i−γj′ , where sum of degrees of p1 and p2 is
b1 + b2 + 2− s− s′, s or s′ should be at least 2. Since s, s′ ≥ 1, b1 + b2 ≤ 2m, the sum of
degree of p1 and p2 would be at most 2m − 1. Therefore at least one of p1, p2 will have
degree ≤ m− 1. Without loss of generality say p1 has degree ≤ m− 1. Then by (22) and
(23)

4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
p1(α + i)wα+i−γj

(
N

k

)α+i−t)
= 0. (32)

Therefore, the contribution of the terms p1(α + j)wα+j−γ1j p2(β + i)wβ+i−γj′ to will be 0.

Thus the contribution from congruence configurations containing wj 6= w1 to E[(µ
(m)
AN ,1

)2]
is 0 as N →∞. �

Now we can restrict ourselves to the simplest case where wj 6= w1 are all 0. We want to

prove that when k1 = 1, the contribution from the crossovers to E[(µ
(m)
AN ,1

)2] is 0. Assume
w1 6= 0 and w2 = · · · = wk = 0.

Theorem 3.4 When k1 = 1 and wj = 0 for all wj 6= w1, we have

lim
N→∞

Var
[
µ
(m)
AN ,1

]
= 0. (33)

Proof. We are left to prove that the contributions from crossovers to E[(µ
(m)
AN ,1

)2] is 0.
Fix the pair of congruence configuration at Ci+α and Cj+β. Suppose there are b1 blocks

in Ci+α and b2 blocks in Cj+β. If b1 < m or b2 < m, then

m∑
i=0

m∑
j=0

(
m

i

)(
m

j

)
(−1)2m−i−jip

′
jq
′

=
m∑
i=0

(
m

i

)
(−1)m−iip

′
m∑
j=0

(
m

j

)
(−1)m−ijq

′
= 0

for all integers 0 ≤ p′ ≤ b1 and 0 ≤ q′ ≤ b2, so that the contributions from this configura-
tion cancel out. So we only need to look at configurations with b1 ≥ m and b2 ≥ m.

Now notice that in this W , wj = 0 for all j 6≡ 1 (k). Thus, if there is some 1-block
in Ci+α or Cj+β, then both E [Ci+αCj+β] and E [Ci+α] E [Cj+β] are 0. Therefore, we can
restrict ourselves to the configurations where all the blocks are 2-blocks.
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By Lemma 2.10 and Equation (19), We only need to consider congruence configurations
where b1 + b2 ≤ 2m. Combining with b1 ≥ m, b2 ≥ m, We require b1 = b2 = m, and both
a’s in 2-blocks matched with their adjacent entry. But then crossover matchings between
Ci+α and Cj+β become impossible. Therefore, we conclude that

lim
N→∞

Var
[
µ
(m)
AN ,1

]
= 0. (34)

�

A Proof of Lemma 2.7

Lemma A.1 Fix s ∈ N with s ≥ 2. For η ∈ N with η ≥ s and distinct w1, . . . , ws, we
have ∑

x1+···+xs=η
x1,...,xs≥1

wx11 . . . wxss =

∑s
l=1w

η+2−s
l fl(w1, . . . , ws)∏

1≤i<j≤s(wi − wj)
, (35)

where each fl(w1, . . . , ws) ∈ R[w1, . . . , ws] is a homogeneous polynomial of degree
(
s
2

)
+

s− 2.

Proof. Induct on s. When s = 2, by geometric progression, for all η ∈ N with η ≥ 2,
we have ∑

x1+x2=η
x1,x2≥1

wx11 w
x2
2 =

wη1w2 − wη2w1

w1 − w2

. (36)

Suppose s ∈ N with s ≥ 2 and equation (35) holds for all η ∈ N with η ≥ s. Then for
η ≥ s+ 1,

∑
x1+···+xs+1=η
x1,...,xs+1≥1

wx11 . . . w
xs+1

s+1 =

η−s∑
xs+1=1

∑
x1+···+xs=η−xs+1

x1,...,xs≥1

wx11 . . . wxss w
xs+1

s+1

=

η−s∑
xs+1=1

∑s
l=1w

η−xs+1+2−s
l fl(w1, . . . , ws)∏
1≤i<j≤s(wi − wj)

w
xs+1

s+1

=
s∑
l=1

fl(w1, . . . , ws)∏
1≤i<j≤s(wi − wj)

wη+1−s
l ws+1 − wlwη+1−s

s+1

1− ws+1

wl

=

∑s
l=1w

η+1−s
l (wlws+1

∏
1≤i≤s
i 6=l

(wi − ws+1)fl(w1, . . . , ws))∏
1≤i<j≤s+1(wi − wj)

−
wη+1−s
s+1 (

∑s
l=1w

2
l

∏
1≤i≤s
i 6=l

(wi − ws+1)fl(w1, . . . , ws))∏
1≤i<j≤s+1(wi − wj)

, (37)
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where each wlwj
∏

1≤i≤s
i 6=l

(wi − ws+1)fl(w1, . . . , ws) is a homogeneous polynomial in

w1, . . . , ws+1 of degree 2 + (s− 1) + (
(
s
2

)
+ s− 2) =

(
s+1
2

)
+ s+ 1− 2. �

Lemma A.2 Fix s ∈ N with s ≥ 2, q ∈ N ∪ {0}, and α1, . . . , αq ∈ N≤s (may not be
distinct). For η ∈ N with η ≥ s and distinct w1, . . . , ws, we have∑

x1+···+xs=η
x1,...,xs≥1

xα1 . . . xαqw
x1
1 . . . wxss =

∑s
l=1w

η+2−s
l fl,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q , (38)

where each fl,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws] is a homogeneous polynomial in w1, . . . , ws
of degree 2q

(
s
2

)
+ s − 2. Furthermore, the coefficients in the polynomial fl,η(w1, . . . , ws)

are polynomials in η of degree ≤ q.

Proof. Induct on q. The case q = 0 was proved in Lemma A.1. Suppose q ∈ N and we
have ∑

x1+···+xs=η
x1,...,xs≥1

xα1 . . . xαq−1w
x1
1 . . . wxss =

∑s
l=1w

η+2−s
l fl,η,α1,...,αq−1(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q−1 (39)

for all η ∈ N with η ≥ s, where each fl,η,α1,...,αq−1(w1, . . . , ws) is a homogeneous polynomial
in w1, . . . , ws of degree 2q−1

(
s
2

)
+ s− 2 and the coefficients are polynomials in η of degree

≤ q − 1. Then∑
x1+···+xs=η
x1,...,xs≥1

xα1 . . . xαqw
x1
1 . . . wxss = wαq

∂

∂wαq

∑
x1+···+xs=η
x1,...,xs≥1

xα1 . . . xαq−1w
x1
1 . . . wxss

=

∑s
l=1w

η+2−s
l wαq

∂fl,η,α1,...,αq−1
(w1,...,ws)

∂wαq
(
∏

1≤i<j≤s(wi − wj))2
q−1

(
∏

1≤i<j≤s(wi − wj))2
q

+
wη+2−s
αq (η + 2− s)fl,η,α1,...,αq−1(w1, . . . , ws)(

∏
1≤i<j≤s(wi − wj))2

q−1

(
∏

1≤i<j≤s(wi − wj))2
q

−

∑s
l=1w

η+2−s
l fl,η,α1,...,αq−1(w1, . . . , ws)wαq

∂
∂wαq

(
∏

1≤i<j≤s(wi − wj))2
q−1

(
∏

1≤i<j≤s(wi − wj))2
q . (40)

Note that by induction hypothesis, we have

1. wαq
∂fl,η,α1,...,αq−1

(w1,...,ws)

∂wαq
(
∏

1≤i<j≤s(wi − wj))2
q−1

is a homogeneous polynomial in

w1, . . . , ws of degree 1 + (2q−1
(
s
2

)
+ s − 2 − 1) + 2q−1

(
s
2

)
= 2q

(
s
2

)
+ s − 2 and the

coefficients are polynomials in η of degree ≤ q − 1;

2. (η + 2 − s)fl,η,α1,...,αq−1(w1, . . . , ws)(
∏

1≤i<j≤s(wi − wj))2
q−1

is a homogeneous poly-

nomial in w1, . . . , ws of degree (2q−1
(
s
2

)
+ s − 2) + 2q−1

(
s
2

)
= 2q

(
s
2

)
+ s − 2 and the

coefficients are polynomials in η of degree ≤ q;
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3. fl,η,α1,...,αq−1(w1, . . . , ws)wαq
∂

∂wαq
(
∏

1≤i<j≤s(wi − wj))
2q−1

is a homogeneous polyno-

mial in w1, . . . , ws of degree (2q−1
(
s
2

)
+ s− 2) + 1 + (2q−1

(
s
2

)
− 1) = 2q

(
s
2

)
+ s− 2 and

the coefficients are polynomials in η of degree ≤ q − 1.

Therefore, after collecting the terms, we get (38). �

Lemma A.3 Fix s ∈ N with s ≥ 2 and some polynomial p(x1, . . . , xs) ∈ R[x1, . . . , xs] of
degree q. For η ∈ N with η ≥ s and distinct w1, . . . , ws, we have∑

x1+···+xs=η
x1,...,xs≥1

p(x1, . . . , xs)w
x1
1 · · ·wxss =

∑s
l=1w

η+2−s
l fl,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q , (41)

where each fl,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws] is a homogeneous polynomial in w1, . . . , ws
of degree 2q

(
s
2

)
+ s − 2. Furthermore, the coefficients in the polynomial fl,η(w1, . . . , ws)

are polynomials in η of degree ≤ q.

Proof. By Lemma A.2, fix any d ∈ N ∪ {0} with d ≤ q, and α1, . . . , αd ∈ N≤s, we have

∑
x1+···+xs=η
x1,...,xs≥1

xα1 . . . xαdw
x1
1 . . . wxss =

∑s
l=1w

η+2−s
l f̃l,η(w1, . . . , ws)(

∏
1≤i<j≤s(wi − wj))2

q−2d

(
∏

1≤i<j≤s(wi − wj))2
q ,

(42)

for some degree 2d
(
s
2

)
+s−2 homogeneous polynomials f̃l,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws]

whose coefficients are polynomials in η of degree ≤ d. Then f̃l,η(w1, . . . , ws)(
∏

1≤i<j≤s(wi−
wj))

2q−2d are homogeneous polynomials in w1, . . . , ws of degree 2d
(
s
2

)
+s−2+(2q−2d)

(
s
2

)
=

2q
(
s
2

)
+ s− 2, and the coefficients are polynomials in η of degree ≤ d ≤ q, and the result

follows. �

Lemma A.4 Fix s ∈ N with s ≥ 2, q ∈ N ∪ {0}, y1, . . . , ys ∈ N, and α1, . . . , αq ∈ N≤s
(may not be distinct). For η ∈ N with η ≥

∑s
i=1 yi and distinct w1, . . . , ws, we have

∑
x1+···+xs=η

xi≥yi

xα1 . . . xαqw
x1
1 . . . wxss =

∑s
l=1w

η+2−
∑s
i=1 yi

l fl,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q , (43)

where each fl,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws] is a homogeneous polynomial in w1, . . . , ws
of degree 2q

(
s
2

)
+(
∑s

i=1 yi)−2. Moreover, the coefficients in the polynomial fl,η(w1, . . . , ws)
are polynomials in η of degree ≤ q.

Proof. By Lemma A.3, we have

∑
x1+···+xs=η

xi≥yi

xα1 . . . xαqw
x1
1 . . . wxss =

s∏
i=1

wyi−1i

∑s
l=1w

η+2−
∑s
i=1 yi

l f̃l,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q ,

the pump journal of undergraduate research 4 (2021), 202–221 218



where each f̃l,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws] is a homogeneous polynomial in w1, . . . , ws
of degree 2q

(
s
2

)
+s−2, and the coefficients of fl,η(w1, . . . , ws) are polynomials in η of degree

≤ q. Then each fl,η(w1, . . . , ws) =
∏s

i=1w
yi−1
i f̃l,η(w1, . . . , ws) is a homogeneous polynomial

in w1, . . . , ws of degree 2q
(
s
2

)
+ (
∑s

i=1 yi)− 2, and the coefficients are polynomials in η of
degree ≤ q. �

Lemma A.5 Fix s ∈ N with s ≥ 2 and some polynomial p(x1, . . . , xs) ∈ R[x1, . . . , xs] of
degree q. For η ∈ N with η ≥

∑s
i=1 yi and distinct w1, . . . , ws, we have

∑
x1+···+xs=η

xi≥yi

p(x1, . . . , xs)w
x1
1 . . . wxss =

∑s
l=1w

η+2−
∑s
i=1 yi

l fl,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q , (44)

where each fl,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws] is a homogeneous polynomial in w1, . . . , ws
of degree 2q

(
s
2

)
+(
∑s

i=1 yi)−2. Moreover, the coefficients in the polynomial fl,η(w1, . . . , ws)
are polynomials in η of degree ≤ q.

Proof. By Lemma A.4, fix any d ∈ N ∪ {0} with d ≤ q, and α1, . . . , αd ∈ N≤s, we have∑
x1+···+xs=η

xi≥yi

xα1 . . . xαdw
x1
1 . . . wxss (45)

=

∑s
l=1w

η+2−s
l f̃l,η(w1, . . . , ws)(

∏
1≤i<j≤s(wi − wj))2

q−2d

(
∏

1≤i<j≤s(wi − wj))2
q (46)

for some degree 2d
(
s
2

)
+ (
∑s

i=1 yi)− 2 homogeneous polynomials f̃l,η(w1, . . . , ws) ∈
R[η][w1, . . . , ws] whose coefficients are polynomials in η of degree ≤ d. Then we have
f̃l,η(w1, . . . , ws)(

∏
1≤i<j≤s(wi − wj))

2q−2d are homogeneous polynomials in w1, . . . , ws of

degree 2d
(
s
2

)
+ (
∑s

i=1 yi)− 2 + (2q− 2d)
(
s
2

)
= 2q

(
s
2

)
+ (
∑s

i=1 yi)− 2, and the coefficents are
polynomials in η of degree ≤ d ≤ q, and the result follows. �

B Proof of Proposition 2.13

By Lemma 2.10, the configurations with the highest number of degrees of freedom contain
only 1- and 2-blocks. The number of ways to arrange the constants w1’s and the blocks
(take all blocks to be identical) is

(α + i)β

β!
+ p̃(α + i),

where p̃ is a polynomial of degree ≤ β−1, and the number of ways to choose the 1-blocks
among all the blocks is

(
β
m1

)
.

Now we assign the equivalence classes modulo k of the inner indices of the 2-blocks.
The number of ways to assign inner indices of 2-blocks is (k − 1)β−m1 . The number
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of ways to assign indices of the 1-blocks is the same as the number of cyclic product
bi1i2bi2i3 · · · bim1 i1

, where ij’s are chosen from k1 residues modulo k with the b’s matched

in pairs under the restriction that ij 6= ij+1 for all j. Thus it is the expected trace of mth
1

power of k1 × k1 GOE, which is Ek1 [Tr (Bm1)].
Finally, for each index, once we have specified its congruence class modulo k, the

number of ways to choose it from {1, 2, . . . , N} is
(
N
k

)α+i−β
+O(N

k
)α+i−β−1.

C Proof of Proposition 2.14

By Proposition 2.13 and (12), we get the contribution from the configurations with β
blocks to the expected mth moment of the blip is

1

k1

4nl∑
α=2n

cα

(
k

w1N

)α m∑
i=0

(
m

i

)(
−w1N

k

)m−i
(

β∑
m1=0

w
α+i−m1−2(β−m1)
1

(
β

m1

)
(k − 1)β−m1Ek1 [Tr(Bm1)]

)
(

(α + i)β

β!
+ p̃(α + i)

)(
N

k

)α+i−β
+Oβ

(
(α + i)β

(
N

k

)α+i−β−1)
. (47)

Recall that by (19) and Lemma 2.10, the contribution becomes insignificant as N →∞
if β > m. On the other hand, given any polynomial p(x) ∈ R[x] of degree less than m and

t ∈ Z, we have
∑m

i=0

(
m
i

) (
−w1N

k

)m−i
p(α+i)

(
N
k

)α+i−t
=
(
N
k

)m+α−t∑m
i=0

(
m
i

)
(−1)m−ip(α+

i) = 0 from Lemma 2.12 using the fact that (x − 1)m has a zero of order m at 1, so the
contribution cancels out if β < m. Therefore, only the configurations with m blocks will
contribute.

We set β = m in (47), and use the identity

m∑
i=0

(
m

i

)
(−1)m−iij =

{
0 if j = 0, 1, . . . ,m− 1,

m! if j = m,

and the fact that
∑4nl

α=2n cα = f 2n
1 (1) = 1 to get the expected m-th moment

lim
N→∞

E
[
µ
(m)
AN ,1

]
=

1

k1

m∑
m1=0

(
m

m1

)(
k − 1

w1

)m−m1

Ek1 [Tr(Bm1)] . (48)
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