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1 Introduction

The subject of differential topology began with the study of finite dimensional smooth
manifolds, objects which retained many of the features of the euclidean spaces studied
classically. These incredibly specialized spaces have more than enough structure to allow
for the smoothness of maps between them to be defined, and for many important theorems
in elementary calculus to be extended in a natural way. They also possess enough structure
to ensure many other desirable properties, like the equivalence of all notion of tangent
space, connectedness implying smooth path connectedness, and continuous homotopy
implying smooth homotopy for smooth maps. These spaces are also incredibly relevant to
the physical sciences, being central not only to General Relativity, but also to the modern
gauge-symmetry approach to Quantum Field Theory.

Ever since the inception of smooth manifolds, it was understood that there were larger
categories at work, as manifolds with boundaries were quickly introduced alongside the
original spaces, followed shortly thereafter by those with a boundary and corners. In
those places where the definition of smooth manifold was found to be insufficient, many
authors of a variety of motivations produced new classes of objects which could still allow
for a consistent notion of smoothness for the mappings between them. At present, the
most general conceptions of smoothness defined using only topological terminology can
be found in the categories of Frölicher, Sikorski, and Souriau spaces. The category of
Frölicher spaces can be embedded as full subcategories of the categories of Sikorski spaces
(often called differential spaces) and Souriau spaces (often called diffeological spaces)
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[1, 7], while the category of smooth manifolds can itself be embedded in the category
of Frölicher spaces as a full subcategory. This means that the smooth manifolds can be
embedded as full subcategories in all three of these new categories, making each of them
a generalization of the smooth manifolds.

Souriau and Sikorski spaces in particular have the claim of forming the most general
categories in this presented lineup, but their conceptions of smoothness are not coincident.
This naturally raises the question of whether or not there is some larger category whose
class of morphisms can still justifiably be referred to as smooth maps. Jordan Watts, in
his thesis [7], suggested the class of objects for such a category, sets bestowed with both
a structure of Souriau and of Sikorski’s definitions. He added that in addition to this
pair of structures, a meaningful new space would require that these two structures are
compatible with one another, in the sense that compositions formed from this pair should
belong to the class of smooth maps between open subsets of euclidean spaces.

In this paper, Watts’ category will be completed with a definition for smooth mapping
between his spaces, and it will be shown that the Souriau spaces and Sikorski spaces,
and by extension Frölicher spaces and smooth manifolds, may be embedded as full sub-
categories into Watts’. This will be followed with a demonstration that several of the
beloved topological qualities of smooth manifolds are also found in Watts spaces, such as
the equivalence of several notions of separation, the prospect of extension of smooth map-
pings, and approximation of continuous mappings by smooth ones. Finally, a condition is
produced, which when required of a Watts space guarantees smooth path-connectedness
of all connected components.

2 The Category of Watts Spaces

Set will be used to denote the category of sets and functions, while C∞ wille be short for
the category of smooth manifolds and C∞ mappings, where here C∞ means that every
local representation of a function is infinitely continuously differentiable. For any category
Cat, and for any objects A and B in Cat’s class of objects the corresponding class of
morphisms going from A to B will be denoted Cat(A,B).

Definition 2.1 A Souriau Space is an ordered pair (X,P ) where X is a set, and

P ⊂
∞⋃
n=0

 ⋃
U is open
in Rn

Set(U,X)

 ,

which satisfies the Souriau Axioms:
1) P contains every constant map in the set

∞⋃
n=0

 ⋃
U is open
in Rn

Set(U,X)

 .
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2) If p ∈ P , and

f ∈
∞⋃
n=0

 ⋃
U is open
in Rn

C∞(U,Dom(p))

 ,

then p ◦ f ∈ P .
3) If there exists a function

f ∈
∞⋃
n=0

 ⋃
U is open
in Rn

Set(U,X)

 ,

such that there also exists an accompanying open cover {Uj}j∈J of Dom(f), and a set of
functions {pj}j∈J ⊂ P for which f |Uj

= pj|Uj
holds true for every j ∈ J , then f ∈ P .

A set P satisfying these axioms is called a Souriau Structure, and members of P
will be referred to as Plots.

Smoothness for mappings between Souriau spaces is then defined as the preservation
of Souriau structures under composition.

Definition 2.2 Let (X,PX) and (Y, PY ) be Souriau spaces, a function f : X → Y is
Souriau Smooth if f ◦ p ∈ PY for every p ∈ PX .

Together these objects and maps form a category, abbreviated Sou, which is investi-
gated thoroughly in [3].

Definition 2.3 A Sikorski Space is an ordered pair (X,C) where X is a set, and
C ⊂ Set(X,R) satisfying the Sikorski Axioms:

1) C contains all possible constant maps in Set(X,R).
2) if f ∈ C∞(Rn,R), and {cj}nj=1 ⊂ C, then f(c1, c2, ..., cn) ∈ C.
3) if f ∈ Set(X,R) such that there is an open cover {Uj}j∈J of X (in the initial

topology determined by C) and a set of functions {cj}j∈J ⊂ C such that f |Uj
= cj|Uj

for
every j ∈ J , then f ∈ C.

A set of maps C obeying these axioms is called a Sikorski Structure, and the ele-
ments it contains will be called Coplots.

This definition is modified slightly from the standard presented in the beginning of
[6], to more clearly illustrate the parallels between the Souriau axioms and the Sikorski
axioms. Generally the Sikorski structure is also assumed to be nonempty, which turns the
first axiom into a theorem depending on the second axiom and non-emptiness. Sikorski
spaces have an accompanying notion of smoothness parallel to that defined for Souriau
spaces.

Definition 2.4 Let (X,CX) and (Y,CY ) be Sikorski spaces, a function f : X → Y is
Sikorski smooth if c ◦ f ∈ CX for all c ∈ CY .
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Sikorski spaces together with Sikorski smooth maps form a category, abbreviated here
as Sik. These Sikorski and Souriau structures, as they are presented here, have axioms
which appear to be quite dual to one another. Moreover, these axioms represent the
minimal requirements necessary for a definition of smoothness.

The axiom regarding the inclusion of constant maps is necessary because smoothness
generalizes infinite continuous differentiability, and constant maps are the most continu-
ously differentiable variety of functions. The axiom allowing for smooth compositions of
maps on the euclidean side of our plots and coplots is necessary if we are to consider the
elements of these structures to be smooth maps, as smoothness ought to be a preserved
under compositions, and doing so would ensure that we could eventually form a category
with these maps as the morphisms. Finally, the last axiom found in either definition is
responsible for guaranteeing that the new notion of smoothness is still a local property,
in the same way that continuity is a local property.

Definition 2.5 A Watts Space is an ordered triple (X,P,C) where X is a set, P is a
Souriau structure, C is a Sikorski structure, and the pair (P,C) satisfies Watts’ Axiom

(c ◦ p) ∈
∞⋃
n=0

 ⋃
U is open
in Rn

C∞(U,R)

 for every (c, p) ∈ C × P. (1)

A pair (P,C) satisfying these requirements will be referred to as a Watts Structure.

The minimality of required axioms in this object class is preserved, as Watts’ sug-
gested axiom is an extension of the second Souriau and Sikorski axioms, in that it simply
continues to enforce the preservation of smoothness under compositions. Any set can be
made into a Watts space, as this category admits a trivial object for every element of
Set’s object class.

Definition 2.6 Given a set X, the Trivial Structure associated to it is the pair (P,C),
where:

P =

p ∈
∞⋃
n=0

 ⋃
U is open
in Rn

Set(U,X)

∣∣∣∣p is constant

 , and

C = {c ∈ Set(X,R)|c is constant}.

More interestingly, all finite dimensional smooth manifolds can be interpreted as Watts
spaces in a natural way.

Definition 2.7 Given a finite-dimensional smooth manifold M , the Standard Struc-
ture associated to it is the pair (P,C), where:

P =
∞⋃
n=0

 ⋃
U is open
in Rn

C∞(U,M)

 , and
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C = C∞(M,R).

Any smooth manifold, such as one of the euclidean spaces, will always be assumed to
be equipped with this standard structure unless otherwise specified. Much like the smooth
manifolds, where one begins with a topological manifold and bestows it with a smooth
structure, we have begun with a set, and equipped it with sets of maps which constitute
a smooth structure. There are notable differences between the two approaches, first of
which being that in the case of Watts spaces, the topology is determined by the structure,
as we will see, but a smooth manifold’s topology was implicit to the base object before it
was made smooth. A second difference is that a Watts structure does not mandate that
the Watts space it is defining is locally euclidean throughout, and so the diffeomorphism
groups of the connected components of a Watts space need not act transitively on their
respective components.

Definition 2.8 Let (X,PX , CX) and (Y, PY , CY ) be Watts spaces, and let A ⊂ X be an
arbitrary subset. A map f : A→ Y will be called Smooth if:

1) A = X, f is both Souriau smooth for the Souriau spaces (X,PX) and (Y, PY ) and
Sikorski smooth for the Sikorski spaces (X,CX) and (Y,CY )

2) A 6= X, there is a map f ∗ : X → Y which is smooth according to the first case,
such that f ∗|A = f .

This notion of smoothness just entails the combined requirements from the definitions
of smoothness in the Souriau and Sikorski categories. The restriction case has been added
to this definition in order to allow for certain theorems to be stated while avoiding the
discussion of sub-object constructions, which will not be defined here.

By bestowing a set with a Watts structure, one has declared those members of the
Watts structure to be exactly the set of smooth maps between euclidean spaces and the
set in question, this declaration then enforces the new notion of smoothness on all maps
between these spaces.

Theorem 2.9 If (X,P,C) is a Watts space then a map

p ∈
∞⋃
n=0

 ⋃
U is open
in Rn

Set(U,X)

 ,

is smooth if and only if p ∈ P , and similarly, a map c ∈ Set(X,R) is smooth if and only
if c ∈ C.

Proof. Let (X,P,C) be a Watts space, and let p ∈ P , then for any plot in the standard
Watts structure on Dom(p):

f ∈
∞⋃
n=0

 ⋃
U is open

in Rn

C∞(U,Dom(p))

 ,
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the second Souriau axiom allows us to conclude that p ◦ f ∈ P . For any c ∈ C, c ◦ p ∈
Set(Dom(p),R), while the Watts axiom guarantees that

c ◦ p ∈ C∞(Dom(p),R).

Therefore c ◦ p ∈ C∞(Dom(p),R), and so it is a coplot in Dom(p)’s standard structure.
Thus every p ∈ P is indeed smooth.

Now assume that a map

p ∈
∞⋃
n=0

 ⋃
U is open
in Rn

Set(U,X)

 ,

is smooth. Since Id : Dom(p) → Dom(p) is C∞, so it is a plot on Dom(p), which means
that p = p◦Id ∈ P by the definition of smooth map. Therefore a map p ∈

⋃∞
n=0 Set(Rn, X)

can only be smooth if it is a plot.
Let c ∈ C, for any coplot f ∈ C∞(R,R) in R’s standard structure, the second Sikorski

axiom guarantees that f ◦ c ∈ C. For any p ∈ P , the Watts axiom guarantees that

c ◦ p ∈
∞⋃
n=0

 ⋃
U is open
in Rn

C∞(U,R)

 .

From this we can deduce that c ◦ p is one of the plots in R’s standard structure, and this
allows us to conclude that all coplots c ∈ C are smooth.

Now assume that c ∈ Set(X,R) is a smooth map, then since Id : R→ R is C∞ it is a
coplot in R’s standard structure. This together with the definition of smooth map imply
that c = Id ◦ c ∈ C. Therefore coplots are exactly the smooth real valued functions on a
Watts space. �

To see that this definition of smoothness is well-chosen from the categorical point
of view, a demonstration of the compatibility of this definition with ordinary function
composition is required.

Theorem 2.10 Compositions of smooth maps are smooth.

Proof. Let f : A → Y and g : B → Z be smooth maps for Watts spaces (X,PX , CX),
(Y, PY , CY ), and (Z, PZ , CZ) where A ⊂ X, B ⊂ Y , and f(A) ⊂ B. By the definition of
smoothness, there must be smooth maps f ∗ : X → Y and g∗ : Y → Z such that f ∗|A = f
and g∗|B = g.

For any p ∈ PX , f ∗◦p ∈ PY by f ∗’s smoothness, and so g∗◦(f ∗◦p) = (g∗◦f ∗)◦p ∈ PZ
by the smoothness of g∗. For any c ∈ PZ , c ◦ g∗ ∈ CY by g∗’s smoothness, and so
c ◦ (g∗ ◦ f ∗) = (c ◦ g∗) ◦ f ∗ ∈ CX by the smoothness of f ∗. Therefore g∗ ◦ f ∗ : X → Z is a
smooth map.

Since f ∗|A = f , and so f ∗(A) = f(A) ⊂ B, we must also have that (g∗ ◦ f ∗)|A =
g∗|B ◦ f ∗|A = g ◦ f . Therefore g ◦ f is smooth, and so we are justified in concluding that
smoothness is preserved by standard function composition. �
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The last piece of confirmation necessary to indicate that this choice of definition suffices
to produce a category is that it is flexible enough to be inclusive of all identity maps, which
will leave this class of morphisms with enough structure to form a category when paired
with the class of all Watts spaces.

Theorem 2.11 The Identity map of any Watts space is a smooth map.

Proof. Let (X,P,C) be a Watts space and Id : X → X be the identity map on X.
Then for any c ∈ C, c ◦ Id = c ∈ C, and for any p ∈ P , Id ◦ p = p ∈ P , therefore Id is
smooth by definition. �

Together these results show us that the objects and mappings defined here possess the
requisite structure to produce a category.

Theorem 2.12 The class of all Watts spaces, the class of all smooth maps between Watts
spaces, and ordinary function composition together form a category.

Proof. That our composition rule is associative follows from the associativity of ordinary
function composition, while the closure of the class of smooth maps between Watts spaces
under composition of its members is justified by theorem 2.10. That members of the class
of all Watts spaces have identity morphisms in the class of all smooth maps between Watts
spaces follows immediately from proposition 2.11, that all identity maps are smooth,
therefore the pair of collections described does indeed form a category. �

Now that we are completely justified in referring to it as a category, the class of Watts
spaces together with the class of all smooth maps will be abbreviated as the category Wat.
With access to the category described by Watts now firmly established, the next order
of business is to prove Watts’ claim that a category with spaces fitting his description
should generalize the previous categories bearing smooth maps. It won’t be necessary
to show this for all four such categories previously referenced, as those of Sikorski and
Souriau spaces both generalize the categories of Frölicher spaces and smooth manifolds.
Therefore a demonstration that the Sikorski and Souriau categories can be embedded as
full subcategories of Wat will be sufficient to prove this fact for all relevant cases.

Theorem 2.13 There exists categorical embeddings from Sik and Sou to Wat.

Proof. Define the functors F : Sik→Wat and G : Sou→Wat in the following way:

F (X,C) =

(
X,

{
p ∈

∞⋃
n=0

Set(Rn, X)|c ◦ p is smooth ∀c ∈ C

}
, C

)
,

F (f : X1 → X2) = f : X1 → X2,

G(Y, P ) = (Y, P, {c ∈ Set(Y,R)|c ◦ p is smooth ∀p ∈ P}) ,

G(g : Y1 → Y2) = g : Y1 → Y2.

That F (X,C) and G(Y, P ) are indeed Watts spaces follows from proposition 2.7 of [1],
where it is shown that the procedure of selecting all maps that could possibly compose
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smoothly with the starting structure always generates the opposing structure beginning
from a Sikoski structure or a Souriau structure, and it is clear the image pairs must satisfy
Watts’ axiom from their definition.

Let f : X1 → X2 be Sikorski smooth for Sikorski spaces (X1, C1) and (X2, C2). F (f) =
f will send coplots to coplots by the definition of Sikorski smooth, so let p belong to
F (X1, C1)’s set of plots. For any c ∈ C2, c ◦ f ∈ C1 by Sikorski smoothness, therefore
(c ◦ f) ◦ p = c ◦ (f ◦ p) is a smooth map by the Watts axiom. Since this is true for every
c ∈ C2, and F (X2, C2)’s set of plots contains every map that composes smoothly with all
members of C2, f ◦ p must be one of F (X2, C2)’s plots, and so F (f) is smooth.

Let g : Y1 → Y2 be Souriau smooth for Souriau spaces (Y1, P1) and (Y2, P2). F (g) = g
will send plots to plots by the definition of Souriau smooth, so let c belong toG(Y2, P2)’s set
of coplots. For any p ∈ P1, g◦p ∈ P2 by Souriau smoothness, therefore c◦(g◦p) = (c◦g)◦p
is a smooth map by the Watts axiom. Since this is true for every p ∈ P1, and G(Y1, P1)’s
set of coplots contains every map that composes smoothly with all members of P1, c ◦ g
must be one of G(Y1, P1)’s coplots, and so G(g) is smooth.

That these definitions preserve identities and compositions is true trivially due to the
fact that these functors are exactly the identity mappings on their classes of morphisms.
Therefore these functors are at the very least well-defined.

The faithfulness of these functors is also a trivial consequence of having both been
defined as the identity on their classes of morphisms. Fullness as well, since the defini-
tion of smoothness presented here is stronger than either Sikorski smoothness or Souriau
smoothness (being the combination of the two), any Watts smooth map is itself both a
Sikorski smooth map and Souriau smooth map, meaning this map is in the domains of G
and F so that it can always be mapped to itself.

To see that these functors are indeed injective on objects, note that if F (X1, C1) =
F (X2, C2) then F ’s definition immediately implies that X1 = X2 and C1 = C2 since those
components correspond, and so (X1, C1) = (X2, C2). If, on the other hand, G(Y1, P1) =
G(Y2, P2), then G’s definition implies that Y1 = Y2 and P1 = P2, leaving us with (Y1, P1) =
(Y2, P2). Therefore our functors F : Sik → Wat and G : Sou → Wat are indeed fully
faithful, and injective on objects, and so they are indeed categorical embeddings. �

As was previously mentioned, there are similar embeddings of the category of smooth
manifolds into the category of Frölicher spaces, and of the category of Frölicher spaces
into the categories of Souriau spaces and Sikorski spaces [1, 7]. This means that all four
categories can be fully embedded into Wat, and so this category naturally extends all of
these prior smooth categories. Like Sik and Sou, Wat is very amenable to constructions,
for instance the generation of structures from pairs of generating sets.

Definition 2.14 Given a set X, and a pair of sets

P ∗ ⊂
∞⋃
n=0

 ⋃
U is open
in Rn

Set(U,X)

 and C∗ ⊂ Set(X,R),
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for which

c∗ ◦ p∗ ∈
∞⋃
n=0

 ⋃
U is open
in Rn

C∞(U,R)

 for every (c, p) ∈ C × P,

the Generated Structure is the pair here denoted (P,C).
P is defined to be the set of all maps

p ∈
∞⋃
n=0

 ⋃
U is open
in Rn

Set(U,X)

 ,

for which there exists an open cover {Uj}j∈J of Dom(p) such that for all j ∈ J the
restriction p|Uj

is a constant map or equal to a restriction (p∗ ◦ f)|Uj
for some f ∈

C∞(Dom(p),Dom(p∗)) and a p∗ ∈ P ∗.
C consists of all maps c ∈ Set(X,R) for which there exists an open cover {Uj}j∈J of

X in the initial topology determined by C∗ such that each restriction c|Uj
is constant or

equal to a restriction f(c1, c2, ..., cn)|Uj
for some f ∈ C∞(Rn,R) and a finite subset of the

coplot generator {cl}nl=1 ⊂ C∗.

As the name would suggest, the structure generated from a pair such as the one found
above is indeed a Watts structure. Moreover, preservation of the components of these
generating pairs under composition is a necessary and sufficient condition to imply the
smoothness of a mapping, as can be seen from the following proposition.

Theorem 2.15 Generated Watts structures are indeed Watts structures. Additionally, if
two sets X and Y are each given the generating pairs (P ∗X , C

∗
X) and (P ∗Y , C

∗
Y ) respectively,

A ⊂ X and f : A → Y is a map with an extension f ∗ : X → Y for which c∗ ◦ f ∗ ∈ C∗X ,
and so that f ∗ ◦ p∗ ∈ P ∗Y for all p∗ ∈ P ∗X and c∗ ∈ C∗Y , then f is smooth for the generated
Watts spaces.

Proof. Given a set X, and a pair of sets:

P ∗ ⊂
∞⋃
n=0

 ⋃
U is open
in Rn

Set(U,X)

 and C∗ ⊂ Set(X,R),

for which

c∗ ◦ p∗ ∈
∞⋃
n=0

 ⋃
U is open
in Rn

C∞(U,R)

 for every (c, p) ∈ C × P,

then P as defined above is indeed a Souriau structure according to lemma 1.12 in [4].
Similarly, given C∗ the set C as expressed in the same definition is a Sikorski structure
according to proposition 2.26 of [7].
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To see that the pair (P,C) must be a Watts structure, let c ∈ C and p ∈ P . This
means that there exists an open cover {Uj}j∈J of X in the initial topology determined
by C∗ such that each restriction c|Uj

is constant or equal to f(c∗1, c
∗
2, ..., c

∗
n)|Uj

for some
f ∈ C∞(Rn,R) and a finite subset {c∗l }nl=1 ⊂ C∗. It also means that there exists an open
cover {Qk}k∈K of Dom(p) such that each p|Qk

is constant or equal to p∗ ◦ g|Qk
where g is

a C∞ map between euclidean spaces and p∗ ∈ P ∗.
Note that for any c∗ ∈ C∗, c∗◦p must be C∞ because there is an open cover {Qk}k∈K of

its domain Dom(p) such that (c∗◦p)|Qk
= c∗◦(p|Qk

) is constant or equal to c∗◦(p∗◦g)|Qk
=

(c∗ ◦ p∗ ◦ g)|Qk
where g is a C∞ map between euclidean spaces and p∗ ∈ P ∗.

{p−1(Uj)}j∈J is also an open cover of Dom(p), since {Uj}j∈J is part of the initial
topology determined by C∗ and c∗ ◦ p is continuous for every c∗ ∈ C∗. Therefore

{Vj,k = p−1(Uj) ∩Qk}(j,k)∈J×K , (2)

is also an open cover of Dom(p). Moverover, since Vj,k ⊂ Qk, the open cover {Vj,k}(j,k)∈J×K
has been chosen such that p|Vj,k = (p|Qk

)|Vj,k must be constant or equal to (p∗ ◦ g)|Vj,k =
((p∗ ◦ g)|Qk

)|Vj,k where g is a C∞ map between euclidean spaces and p∗ ∈ P ∗.
On the other hand, Vj,k ⊂ p−1(Uj), so that p(Vj,k) = Ran(p|Vj,k) ⊂ Uj, meaning that

c ◦ (p|Vj,k) = (c|Uj
) ◦ (p|Vj,k) = f(c∗1, c

∗
2, ..., c

∗
n)|Uj

◦ (p∗ ◦ g)|Vj,k

= f(c∗1 ◦ p∗ ◦ g, c∗2 ◦ p∗ ◦ g, ..., c∗n ◦ p∗ ◦ g)|Vj,k ,

or else (c ◦ p)|Vj,k = c ◦ (p|Vj,k) is constant. If the restriction is equal to the composition
shown above, then it must be C∞ because f , g, and all of the compositions c∗l ◦ p∗ for all
(c∗l , p

∗) ∈ C∗ × P ∗ are C∞, and it must certainly be C∞ if it is constant. Therefore there
is an open cover of Dom(p) such that c ◦ p’s restrictions are all C∞, therefore it is a C∞

map from an open subset of a euclidean space to the real numbers. From this we may
conclude that the pair (P,C) satisfies the Watts axiom.

Let X and Y be sets, with sets of maps P ∗X , C∗X , P ∗Y , and C∗Y , for which c∗ ◦ p∗ is C∞

for any (c∗, p∗) ∈ P ∗X × C∗X , P ∗Y × C∗Y . Additionally, let A ⊂ X and f : A → Y be a map
with an extension f ∗ : X → Y such that for any p∗ ∈ P ∗X and any c∗ ∈ C∗Y , f ∗ ◦ p∗ ∈ P ∗Y
and c∗ ◦ f ∗ ∈ C∗X .

For any p in the Souriau structure PX generated by P ∗X , there is an open cover {Uj}j∈J
of Dom(p) such that p|Uj

is constant or equal to the restriction of a composition p∗ ◦ g
where g is C∞ and p∗ ∈ P ∗X . Therefore f ∗ ◦ p must have the property that (f ∗ ◦ p)|Uj

is
constant or equal to the restriction of f ∗ ◦p∗ ◦g. Since f ∗ ◦p∗ ∈ P ∗Y , g is C∞, and {Uj}j∈J
covers f ∗ ◦ p’s domain, f ∗ ◦ p must be a member of the Souriau structure PY generated
by P ∗Y .

Note that for any set V ⊂ Y open in the initial topology determined by C∗Y , and any
point y ∈ V , there must be a finite collection of maps {q`}m`=1 and an associated collection
of open subsets of R: {W`}m`=1, such that:

y ∈
m⋂
`=1

q−1` (W`) ⊂ V. (3)
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Applying the preimage with respect to f ∗ to this last containment yields:

f ∗−1(y) ∈ f ∗−1
(

m⋂
`=1

q−1` (W`)

)
=

m⋂
`=1

(q` ◦ f ∗)−1(W`) ⊂ f ∗−1(V ). (4)

Which since every x ∈ f ∗−1(V ) is contained in a fiber f ∗−1(y) for some y ∈ V , and
q ◦ f ∗ ∈ C∗X for all q ∈ C∗Y , means that f ∗−1(V ) is open in the initial topology determined
by C∗X . Therefore f ∗ is continuous when X and Y are given the initial topologies from
C∗X and C∗Y , respectively.

For any c in the Sikorski structure CY generated by C∗Y , there is an open cover {Uj}j∈J
of Y in the initial topology determined by C∗Y such that every restriction c|Uj

is constant
or else equal to the restriction of a composition g(c1, c2, ..., cn) for a C∞ function g and
a finite subset {ck}nk=1 ⊂ C∗Y . By the continuity of f , {f ∗−1(Uj)}j∈J is an open cover of
X in the initial topology determined by C∗X such that c ◦ f ∗|f∗−1(Uj)

= c|Uj
◦ f ∗|f∗−1(Uj)

is either constant or equal to the restriction of g(c1 ◦ f ∗, c2 ◦ f ∗, ..., cn ◦ f ∗), which since
{f ◦ c1, f ◦ c2, ..., f ◦ cn} ⊂ C∗X by hypothesis means that c ◦ f must belong to the Sikorski
structure generated by C∗X .

Therefore f is indeed smooth for the generated spaces, and this argument also sug-
gests that smoothness need only be tested on generating sets, rather than entire Watts
structures. �

Having the ability to generate structures, the notion of product structure will be
defined so as to facilitate later proofs. It should be noted that the natural definition, the
one cast in terms of a natural structure inherited from the set of canonical projection
mappings, has not been used in favour of the more computationally explicit definition
found below. These definitions still coincide, but the demonstration of this fact would
amount to a non-sequitur in the present discussion, so this proof will be found in a sequel.

Definition 2.16 Given an indexed collection of sets {Xj}j∈J , the jth Canonical Pro-
jection associated to the product

∏
j∈J Xj is the map πj :

∏
`∈J X` → Xj defined πj(x) =

x(j) ≡ xj for each
(
x : J →

⋃
j∈J Xj

)
∈
∏

`∈J X`.

Definition 2.17 Given a set X, and an index set J , the associated Diagonal Map
∆ : X →

∏
j∈J X is defined ∆(x) = x̃ ∈

∏
j∈J X, for all x ∈ X where x̃j = x for all

j ∈ J .

Definition 2.18 Given a set of Watts spaces {(Xj, Pj, Cj)}j∈J , the Product Structure
(P∏

j Xj
, C∏

j Xj
) defined on the cartesian product

∏
j∈J Xj is the structure with plots P∏

j Xj

generated from the set:{(∏
j∈J

pj

)
◦∆ : U →

∏
j∈J

Xj

∣∣∣∣pj ∈ Pj,Dom(pj) = U for each j ∈ J

}
and with coplots C∏

Xj
generated from the set⋃

j∈J

{c ◦ πj|c ∈ Cj and πj is the jth canonical projection.}.
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Given this definition, we achieve the natural desirata, that products of smooth maps
become smooth maps between corresponding product structures.

Theorem 2.19 Cartesian products of smooth maps between Watts spaces are smooth on
the resulting product Watts spaces.

Proof. Let {fj : Xj → Yj}j∈J be a set of smooth maps for sets of Watts spaces
{(Xj, Pj, Cj)}j∈J and {(Yj, P ∗j , C∗j )}j∈J , then for any member c ◦ π∗j of the generating set
of C∏

j Yj
, it is true that

(c ◦ π∗j ) ◦
∏
j∈J

fj = c ◦

(
π∗j ◦

∏
j∈J

fj

)
= c ◦ (fj ◦ πj) = (c ◦ fj) ◦ πj. (5)

The composition above must be a member of the generating set for C∏
j Xj

because
c ◦ fj ∈ Cj on account of fj being smooth and c ∈ C∗j for each j ∈ J .

For any
∏

j∈J pj with Dom(pj) = U for all j ∈ J , we can see that(∏
j∈J

fj

)
◦

((∏
j∈J

pj

)
◦∆

)
=

(∏
j∈J

(fj ◦ pj)

)
◦∆. (6)

Therefore the composition above must belong to the generating set of
∏

j∈J Yj’s plots,
because (fj ◦ pj) ∈ P ∗j since fj is smooth and pj ∈ Pj for each j ∈ J . Since

∏
j∈J fj sends

members of the various generating sets to the opposing generating set via composition, it
must be smooth by theorem 2.15. �

Similarly, we can also obtain the result that all diagonal maps are smooth, yet another
result displaying the close analogy of the category of Watts spaces and smooth maps to
the category of topological spaces and continuous maps.

Theorem 2.20 The diagonal map is smooth for any cartesian product equipped with the
product structure.

Proof. Let (X,P,C) be a Watts space, and ∆ be the diagonal map, that is the unique
map ∆ : X →

∏
j∈J X for which (πj◦∆) = Id for the canonical projections πj :

∏
j∈J X →

X and each j ∈ J .

For any plot p ∈ P , the composition ∆ ◦ p =
(∏

j∈J p
)
◦∆∗, where ∆∗ : Dom(p) →∏

j∈J Dom(p) is the diagonal map for Dom(p). This composition must be in P∏
j X

, since∏
j∈J p ∈

∏
j∈J P , and because ∆∗ is a diagonal map, so that the composition is in fact

one of generators of the product structure’s plots.
Given any generator c ◦ πj for the coplots of the product structure on

∏
j∈J X, where

c ∈ C and πj is the jth canonical projection for some j ∈ J , (c ◦ πj) ◦∆ = c ◦ (πj ◦∆) =
c ∈ C. Therefore the diagonal map ∆ is smooth by theorem 2.15, which assures us that
we need only test the smoothness of maps on generating sets. �

Having access to these constructions, we will now move on to the demonstration of
several topological properties of these spaces following the naming convention used for
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Frölicher spaces in [2]. There are more useful ways to define these constructions, and more
constructions which Wat is stable under, but as previously mentioned the discussion of
these and other categorical questions will take place in a sequel.

3 The Topology of Watts Spaces

Given that a Watts structure is composed of two distinguished sets of mappings, there are
two different topologies that one can discuss on any space equipped with such a structure.

Definition 3.1 Given a Watts space (X,P,C), the Plot Topology is the final topology
on X determined by P .

When discussing Souriau spaces, which only come with a set of plots, this topology is
the natural choice. In the study of Souriau spaces, it is often referred to as the D-topology.

Definition 3.2 Given a Watts space (X,P,C), the Coplot Topology is the initial topol-
ogy on X determined by C. A Watts space will always be assumed to be equipped with its
coplot topology.

Just as before, this topology is the natural choice when discussing Sikorski spaces,
which only come equipped with a family of coplots. This state of affairs is rather aesthet-
ically unpleasant; it would be preferable that these topologies happen to coincide, as such
a coincidence removes any decision making on our part about which topology should be
used.

Definition 3.3 A Watts space (X,P,C) will be called Balanced if the plot and coplot
topologies are equal to one another.

This is not the case in general, for an example, consider the trivial structure on R.
Cursed with this freedom, it is traditional to choose the weakest of all available topologies
for general considerations, and specify when a particular result relates to the stronger
topology. The following result demonstrates that the coplot topology is the weaker of the
two in general, justifying it being the topology always given to our Watts space unless
otherwise specified.

Theorem 3.4 The coplot topology is always coarser than the plot topology for any Watts
space (X,P,C).

Proof. Let U ⊂ X be open in the coplot topology for some Watts space (X,P,C),
p ∈ P , and suppose that x ∈ p−1(U). Then p(x) ∈ U , and since this set is a member of
the initial topology determined by C, there must exist a finite subset {cj}nj=1 ⊂ C and a
accompanying finite collection of open sets {Vj ⊂ R}nj=1 such that

p(x) ∈
n⋂
j=1

c−1j (Vj) ⊂ U. (7)
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Applying the preimage with respect to p to this containment yields us

=⇒ p−1
(
p(x)

)
⊂ p−1

(
n⋂
j=1

c−1j (Vj)

)
=

n⋂
j=1

(cj ◦ p)−1(Vj) ⊂ p−1(U). (8)

Now since (cj ◦ p) is a smooth function on a finite dimensional euclidean space for each
j ∈ {1, 2, ..., n} by the Watts axiom, they are also continuous. It is trivially true that
x ∈ p−1

(
p(x)

)
, and the intersection in the center of the containment chain above must be

an open subset of Dom(p) by the continuity of the functions {cj ◦ p|j ∈ J}. This means
that:

=⇒ x ∈
n⋂
j=1

(cj ◦ p)−1(Vj) ⊂ p−1(U). (9)

Since x ∈ p−1(U) was chosen arbitrarily, the containment above implies that p−1(U) ⊂
Dom(p) is an open set. This must be true for all p ∈ P , because the p in this argument
was chosen arbitrarily as well, therefore U is a member of the plot topology. �

Since the plot topology is the finest on our space for which the plots are continuous,
and the coplot topology is contained within it, the plots must be continuous in the coplot
topology. Likewise The coplot topology is the coarsest topology for which the coplots
are continuous, and the plot topology contains it, therefore the coplots are continuous
when our space is given the plot topology. This means that regardless of the status of the
topologies, whether they coincide, or a choice has been made, the coplots and plots will
always be continuous maps.

Definition 3.5 A topology on X is called Smoothly Regular with respect to a Watts
space (X,P,C) when it satisfies the property that if K ⊂ X is closed and x ∈ X − K,
then there exists a c ∈ C such that Ran(c) ⊂ [0, 1], c(x) = 1, and c|K = 0.

A pleasant fact we shall soon see is that all Watts spaces are smoothly regular. This is
due to the fact that we’ve defined our topology in terms of a set of real valued functions
on our space which are closed with respect to compositions with smooth maps, together
with the fact that R is smoothly normal and Hausdorff. This result was understood by
Sikorski, who stated it for the category bearing his name [6].

Theorem 3.6 For any disjoint closed sets K,Q ⊂ R, there exists a smooth map f : R→
R having the properties that Ran(f) ⊂ [0, 1], f |K = 1, and f |Q = 0. In other words, R is
smoothly normal.

Proof. Let K,Q ⊂ R be two disjoint, closed sets. Then {R − K,R − Q} is an open
cover of R, and theorem 2.18 of [5] ensures the existence of smooth partitions of unity
subordinate to this cover. This means we can be certain of the existence of a pair of
nonnegative smooth maps {fQ, fK} such that fK |Q = 0, fQ|K = 0, and fK + fQ = 1.
Nonegativity and fK + fQ = 1 together imply that Ran(fK) ⊂ [0, 1]. fK + fQ = 1 and
fQ|K = 0 together imply that fK |K = 1. Therefore ,there indeed exists a smooth function
fK on R such that fK |K = 1, fK |Q = 0, and Ran(fK) ⊂ [0, 1]. �
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Theorem 3.7 All Watts spaces are smoothly regular.

Proof. Let K ⊂ X be closed in the coplot topology of a Watts space (X,P,C), meaning
that X −K is a member of the coplot topology. Therefore for any x ∈ X −K there is a
finite set of functions {cj}nj=1 ⊂ C and accompanying open sets {Uj ⊂ R}nj=1 such that:

x ∈
n⋂
j=1

c−1j (Uj) ⊂ X −K. (10)

By the smooth normality of R, and the fact that is it Hausdorff, we can be sure that for
every closed set R−Uj ⊂ R, and any disjoint closed set such as the singleton determined
by the point cj(x) ∈ Uj ⊂ R, there exists a smooth function fj : R → R such that
Ran(fj) ⊂ [0, 1], fj(cj(x)) = 1, and fj|R−Uj

= 0.
From this it follows that (fj ◦ cj) is bounded above by (fj ◦ cj)(x) = fj(cj(x)) = 1

for each j ∈ {1, 2, ..., n}. Moreover, because the intersection is a subset of X − K, for
every y ∈ K there must be some j ∈ {1, 2, ..., n} such that y 6∈ c−1(Uj), which implies
that cj(y) ∈ R− Uj. This means that for any y ∈ K, there is a j ∈ {1, 2, ..., n} such that
(fj ◦ cj)(y) = fj(cj(y)) = 0. Finally, this all means that:

c =
n∏
j=1

(fj ◦ cj), (11)

is a function with the property that c(x) = 1, and c(y) = 0 for any y ∈ K. This means
that it satisfies c|K = 0. Moreover, since {cj}nj=1 ⊂ C, the functions {fj}nj=1 are C∞,
multiplication of finitely many real numbers is C∞, and c was formed by composing all of
these maps, it must be that c ∈ C by the first Sikorski axiom. Finally, that Ran(c) ⊂ [0, 1]
can be observed from the fact that (fj ◦ cj) is nonnegative for each j ∈ {1, 2, ..., n}, and
that (fj ◦ cj)(y) ≤ (fj ◦ cj)(x) for each j ∈ {1, 2, ..., n} and each y ∈ X, which together
imply that

∏n
j=1(fj ◦ cj)(y) ≤

∏n
j=1(fj ◦ cj)(x) for each y ∈ X. Thus c is indeed the

member of C with our desired properties, and so (X,P,C) is smoothly regular. �
Having this strong property on hand permits the simplification of several proofs, such

as the proof that smoothness implies continuity.

Theorem 3.8 Smooth maps are continuous.

Proof. Let f : A→ Y be a smooth map for Watts spaces (X,PX , CX) and (Y, PY , CY )
with A ⊂ X. By definition, there must be some smooth f ∗ : X → Y such that f ∗|A = f .
Suppose that U ⊂ Y was an open set. For every x ∈ f ∗−1(U), it must be that x ∈ f ∗−1(y)
for some y ∈ U . Every Watts space is smoothly regular by the previous result, meaning
there is a c ∈ CY so that c(y) = 1, c|Y−U = 0, and Ran(c) ⊂ [0, 1], and so c ◦ f ∗ ∈ CX by
f ∗’s smoothness such that (c◦f ∗)|X−f−1(U) = c|Y−U ◦f |f−1(U) = 0 and (c◦f)(x) = c(y) = 1.

This means that for every x ∈ f ∗−1(U), there is a c ◦ f ∗ ∈ CX such that x ∈
(c ◦ f ∗)−1(0,∞) ⊂ f ∗−1(U), therefore f ∗−1(U) ⊂ X is an open set and so f ∗ must be
continuous. Since f is a restriction of a continuous map f ∗, it must be continuous when
A is given the subspace topology from X. �
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The result above does not require that we invoke smooth regularity, it could have been
proven immediately after introducing the coplot topology, but access to this property leads
to a shorter, simpler proof. Before moving on to the rest of the separation properties, we
will need to convince ourselves that the properties mandated in the axioms of Souriau
and Sikorski for plots and coplots extend to all smooth maps.

Theorem 3.9 Smooth maps inherit the properties required of the plots and coplots:
1) All constant maps are smooth.
2) If {fj : X → Yj}j∈J is a set of smooth maps g :

∏
j∈J Yj → Z is a smooth map,

then g(fj)j∈J : X → Z is a smooth map.
3) If f : X → Y is a function such that there is an open cover {Uj}j∈J of X and a

set of smooth maps {fj : X → Y }j∈J , such that f |Uj
= fj|Uj

for every j ∈ J , then f is
smooth.

Proof. 1) Let f : X → Y be constant, meaning that f(x1) = f(x2) for all x1, x2 ∈ X.
Then for any c ∈ CY or any p ∈ PX , (c ◦ f)(x1) = c(f(x1)) = c(f(x2)) = (c ◦ f)(x2) for
all x1, x2 ∈ X, and (f ◦ p)(t1) = f(p(t1)) = f(p(t2)) = (f ◦ p)(t2) for all t1, t2 ∈ Dom(p).
Therefore both c ◦ f and f ◦ p are constant, and so c ◦ f ∈ CX and f ◦ p ∈ PY by the first
Sikorski and Souriau axioms, and therefore f is smooth.

2) Let {fj : Xj → Yj}j∈J be a set of smooth maps and g :
∏

j∈J Yj → Z be a smooth

map. Then g(fj)j∈J = g◦
(∏

j∈J fj

)
◦∆, therefore the smoothness of cartesian products of

smooth maps, the smoothness of the diagonal map ∆ : X →
∏

j∈J X, and the smoothness
of compositions of smooth functions ensures that g(fj)j∈J is also smooth.

3) Let f : X → Y be a function such that there is an open cover {Uj}j∈J of X and a
set of smooth maps {fj : X → Y }j∈J , such that f |Uj

= fj|Uj
for every j ∈ J . This means

that for all c ∈ CY , and all p ∈ PX , we have the containments c ◦ fj ∈ C and fj ◦ p ∈ P
for each j ∈ J . This implies the existence of an open cover {Uj}j∈J of X such that
(c ◦ f)|Uj

= c ◦ (f |Uj
) = c ◦ (fj|Uj

) = (c ◦ fj)|Uj
for all j ∈ J , thus c ◦ f ∈ CX by the third

Sikorski axiom. On the other hand, p’s continuity ensure that {p−1(Uj)}j∈J is an open
cover of Dom(p) such that (f ◦p)|p−1(Uj) = f |Uj

◦p|p−1(Uj) = fj|Uj
◦p|p−1(Uj) = (fj ◦p)|p−1(Uj)

for each j ∈ J , thus f ◦ p ∈ PY , and so f is smooth by definition. �
Smooth regularity also gives us a first method of testing, or perhaps ensuring, the

balance of a Watts space: Determine if or arrange that the plot topology is smoothly
regular.

Theorem 3.10 A Watts space is balanced if and only if its plot topology is smoothly
regular.

Proof. First, assume that (X,P,C)’s plot topology is smoothly regular. By theorem
3.4, we know that the initial topology determined by C is contained in the final topology
determined by P for any Watts space. Moving on to the opposing containment, let U ⊂ X
be open in the final topology determined by P . Then X − U is a closed set, and any
x ∈ U is not contained in X−U , which by our hypothesis implies the existence of a c ∈ C
with Ran(c) ⊂ [0, 1] such that c(x) = 1 and c|X−U = 0. This means that for the open set
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(0,∞), x ∈ c−1
(
(0,∞)

)
⊂ U , and since x ∈ U was chosen arbitrarily, this means that U

is open in the initial topology determined by C.
Now instead assume that the plot and coplot topologies of our Watts space (X,P,C)

coincide, so that its plot topology is equal to its coplot topology. Then the plot topology
must be smoothly regular, owing to the facts that the coplot topology must be smoothly
regular by theorem 3.7, and that the two topologies are equal. �

Returning to the question of separation axioms, recall that on any smooth manifold,
the Kolmogorov, Fréchet, and Hausdorff separation axioms are equivalent. This can be
proven quickly from metric space structure of any euclidean space and the fact that all
smooth manifolds are locally euclidean, but it can also be shown to hold for Watts spaces
despite the fact that they are not locally-euclidean in general.

Definition 3.11 A Watts space (X,P,C) is Smoothly Hausorff if C separates X, that
is, for any distinct x1, x2 ∈ X there exists a c ∈ C such that c(x1) 6= c(x2).

A space which is smoothly Hausdorff is also Hausdorff, as we will come to see that
the point separation in the definition of smoothly Hausdorff, the Hausdorffness of R, and
the continuity of coplots come together to imply the existence of disjoint open sets for
any distinct points. Less obvious is how the weakest separation axiom could imply a
strengthened version of the second, but just as in the case of smooth manifolds, we are
still able to extract nice properties for these spaces from their close contact with R.

Theorem 3.12 The properties Hausdorff, Smoothly Hausdorff, Fréchet, and Kolmogorov
are all equivalent on Watts spaces.

Proof. We begin by noting that any space which is Hausdorff must be Fréchet, so all
Hausdorff Watts spaces are Fréchet. We follow this up with a similar realization that any
space which is Fréchet must be Kolmogorov.

Now, assume that (X,P,C) is a Kolmogorov Watts space. Then for any distinct
points x1, x2 ∈ X, there is an open set U ⊂ X such that x1 ∈ U and x2 6∈ U . Therefore
K = X − U is a closed set containing x2, and not containing x1, and so by theorem 3.7
there exists a c ∈ C such that c|K = 0 and c(x1) = 1. Therefore c(x1) = 1 6= 0 = c(x2),
and so our Watts space is smoothly Hausdorff.

If we’re instead given a smoothly Hausdorff Watts space (X,P,C), then the Haus-
dorffness of R, along with the fact that C separates points in X, and that members of
C are continuous, together imply the existence of disjoint open neighborhoods for any
distinct points. Therefore smoothly Hausdorff Watts spaces are indeed Hausdorff, and so
the four separation properties are equivalent on Watts spaces. �

In order to demonstrate the next separation result, we will first need to demonstrate
that the set of smooth euclidean valued maps is closed with respect to sums of locally
finite subcollections.

Definition 3.13 Let X be a topological space, and F a collection of maps all taking
on values in the same euclidean space and defined on X, such collections will be called
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Locally Finite if for any x ∈ X there is an open set U ⊂ X containing x such that at
most a finite number F ’s members have non-zero restrictions for this set U .

Theorem 3.14 Let (X,P,C) be a Watts space. Given a locally finite collection of smooth
functions C∗, all having the same euclidean space as their codomain and X as their
domain, there is a smooth map c whose value at every point is equal to the sum of all
members of C∗ which are nonzero there, or zero should all of C∗ vanish there.

Proof. Let C∗ be a locally finite collection of smooth functions on the Watts space
(X,P,C) all sharing the same euclidean space for a codomain, meaning that for every
x ∈ X there is an open set Ux ⊂ X containing x such that all members of C∗ besides a
finite (potentially empty) subset {cx,j}nx

j=1 restrict to zero on Ux. Clearly {Ux}x∈X is an
open cover of X, therefore we may attempt to define a function’s value for every y ∈ X
in the following way:

c(y) =
nx∑
j=1

cx,j(y) where y ∈ Ux ∀y ∈ X. (12)

To see that this function is indeed well-defined, let y ∈ Ux1 ∩Ux2 for some x1, x2 ∈ X, and
let {c1,j}n1

j=1 and {c2,j}n2
j=1 be the finite subsets of C∗ which have nonzero restrictions to

Ux1 and Ux2 , respectively. If c1,j(y) 6= 0 then c1,j must be a member of {c2,j}n2
j=1 because it

will be nonzero when restricted to Ux2 , because it contains y. The exact same argument
works to show that any c2,j for which c2,j(y) 6= 0 must be in {c1,j}n1

j=1. This means that
the collections {c1,j}n1

j=1 and {c2,j}n2
j=1 differ only by functions which vanish at y, and so

the sum of all outputs formed from either collection at y must be the same. Therefore
the value of this function is well-defined at every point in the domain.

Now that we are certain that this definition for a sum is uniquely valued at all points,
let us also note that {Ux}x∈X is an open cover of X for which c|Ux is equal to a sum of
a finite set of smooth functions by its definition, and therefore it is a smooth function by
theorem 3.9. Therefore summation over locally finite collections of functions is not only
well-defined, the class of all smooth maps from a Watts space to a Euclidean space is
closed with respect to the summation of its locally finite subcollections. �

Definition 3.15 Given a Watts space (X,P,C), and an open cover {Uj}j∈J , a Smooth
partition of unity subordinate to {Uj}j∈J is a locally-finite collection of coplots
{cα}α∈A ⊂ C, such that for all α ∈ A there is a j ∈ J so that cα|X−Uj

= 0, cα(X) ⊂ [0, 1]
for every α ∈ A, and: ∑

α∈A

cα = 1. (13)

This definition for smooth partition of unity is not exactly the one commonly stated
for smooth manifolds, found in [5]. It does not refer to the supports of its members,
and the partition is not necessarily indexed over the same set as the cover to which
it is subordinate. Despite these modifications, this definition is still perfectly adequate
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not only for the separation properties still to be demonstrated, it is also sufficient for a
generalization of Whitney’s approximation theorem to these new spaces.

Definition 3.16 Given a Watts space (X,P,C), a topology on X is Smoothly Para-
compact if there exists smooth partitions of unity subordinate to any open cover in that
topology.

Theorem 3.17 If a Watts space is smoothly paracompact, then it is paracompact.

Proof. Let (X,P,C) be a smoothly paracompact Watts space, and let {Vj}j∈J be an
open cover of X. Then there exists a smooth partition of unity {cλ}λ∈L ⊂ C subordi-
nate to {Vj}j=1. That {c−1λ

(
(0,∞)

)
}λ∈L is an open cover of X follows immediately from

requirement that the partition’s sums to one:∑
λ∈L

cλ = 1.

Moreover, since for every λ ∈ L there is a j ∈ J such that cλ|X−Vj = 0, it must be
that c−1λ

(
(0,∞)

)
⊂ Vj. Therefore {c−1λ

(
(0,∞)

)
}λ∈L is a refinement of {Vj}j∈J . The local

finiteness of {cλ}λ∈L guarantees that {c−1λ
(
(0,∞)

)
}λ∈L must be locally finite, therefore

(X,P,C) is paracompact, since any open cover {Vj}j∈J possesses a locally finite refinement
{c−1λ

(
(0,∞)

)
}λ∈L. �

The name smooth paracompactness is somewhat justified by its ability to imply its
continuous namesake. Moving along, we now turn our attention to the smoothly normal
separation property.

Definition 3.18 Given a Watts space (X,P,C), a topology on X is Smoothly Normal
if for any disjoint closed sets K1, K2 ⊂ X, there is a c ∈ C such that Ran(c) ⊂ [0, 1],
c|K1 = 1, and c|K2 = 0.

Theorem 3.19 Smoothly paracompact Watts spaces are smoothly normal.

Proof. LetK,Q ⊂ X be two closed subsets of a Watts space (X,P,C), such thatK∩Q =
∅. {X −Q,X −K} is an open cover of X, therefore by smooth paracompactness there is
a smooth partition of unity {cQ, cK} ⊂ C subordinate to this open cover. Without loss
of generality, it can be taken to have the two members specified, because local finiteness
and theorem 3.14 guarantee that we can add all members of a partition subordinate to
the same open set to arrive at a partition with only two members. Since cQ|Q, cK |K = 0
by definition 3.15, and (cQ + cK)|Q = 1 by the same definition, it must be that cQ|K = 1,
being that definition 3.15 goes on to confine cQ’s range to [0, 1]. Therefore CQ is exactly
the function we seek to separate K and Q, and so X is indeed smoothly normal. �

Not only does smooth paracompactness imply smooth normality on these spaces, but
access to smooth partitions of unity allows for the approximation of continuous mappings
by smooth ones.
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Theorem 3.20 Let (X,P,C) be a smoothly paracompact Watts space, f : X → Rm for
m ∈ N and δ : X → (0,∞) be two continuous functions, and allow A ⊂ X to be a
closed set on which f is smooth. There exists is a smooth function c : X → Rm such that
|f(x)− c(x)| < δ(x) for all x ∈ X, and such that c|A = f |A.

Proof. Let f : X → Rm and δ : X → (0,∞) be two continuous functions on a smoothly
paracompact Watts space (X,P,C), let A ⊂ X be closed, and let q be a smooth map
such that f |A = q|A. Then because f , q, and δ are continuous by theorem 3.8 and by
hypothesis, the set UA of all x ∈ X such that |f(x)− q(x)| < δ(x) is open, and contains
A.

For every y ∈ X − A, there is an open set Uy defined to be the intersection of X − A
with the set of all x ∈ X such that |f(y)− f(x)| < δ(x). {UA, Uy|y ∈ X − A} is an open
cover of X, therefore the smooth paracompactness of (X,P,C) implies that that there is
a smooth partition of unity {cA, cj|j ∈ J} ⊂ C subordinate to this open cover (cA with
cA|X−UA

= 0 must be a member because UA is the only member of the open cover which
contains the points in A by construction). Therefore {cAq, cjf(yj)|j ∈ J} is a locally-finite
collection of smooth functions, where yj is a point in X−UA indexing a cover element Uyj
for which cj|X−Uyj

= 0 for each j ∈ J . This allows us to employ theorem 3.14 to conclude
that the locally finite sum:

c = qcA +
∑
j∈J

f(yj)cj (14)

is a well defined smooth function. Furthermore, by its construction, for any x ∈ X

|f(x)− c(x)| =

∣∣∣∣∣f(x)− q(x)cA(x)−
∑
j∈J

f(yj)cj(x)

∣∣∣∣∣
=

∣∣∣∣∣f(x)

(
cA(x) +

∑
j∈J

cj(x)

)
− q(x)cA(x)−

∑
j∈J

f(yj)cj(x)

∣∣∣∣∣
=

∣∣∣∣∣(f(x)− q(x))cA(x) +
∑
j∈J

(f(x)− f(yj))cj(x)

∣∣∣∣∣
≤ |f(x)− q(x)|cA(x) +

∑
j∈J

|f(x)− f(yj)|cj(x)

< δ(x)cA(x) +
∑
j∈J

δ(x)cj(x) = δ(x).

We are justified in applying the inequalities with δ because the elements of the partition
of unity ensure that the only nonzero values of the summands occur inside the open sets
where they obey the inequality. Thus c not only is a smooth map with c|A = q|A = f |A,
which we can see is because cj|A = 0 for each j ∈ J on account of A being outside of
every member of {Uyj}j∈J by construction, it also obeys the approximation inequality
|f(x)− c(x)| < δ(x) for all x ∈ X. �
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The proof of this special case of Whitney’s Approximation Theorem presented here is
essentially identical to the one found in Lee’s Introduction to Smooth Manifolds [5], but
for the alternative space of interest, and the minor variation on the definition for smooth
partition of unity.

Theorem 3.21 Let A ⊂ X be a closed subset of a smoothly paracompact Watts space
(X,P,C), and let f : A → R be a smooth map, then there is a coplot c ∈ C which is
bounded if f is bounded, and which restricts to f on A.

Proof. To begin with, if f : A→ R is smooth, then by theorem 3.8 it must also be con-
tinuous. By theorem 3.19, we know that any smoothly paracompact Watts space (X,P,C)
must be smoothly normal. The continuity of members of C, and the Hausdorffness of R
then quickly imply that X must be normal.

The Tietze Extension Theorem then guarantees that there is a continuous map k such
that k|A = f and k is bounded if f is. Then by the Whitney approximation theorem and
theorem 2.9, there must be a c ∈ C such that c|A = k|A = f , and such that |c(x)−k(x)| < 1
for all x ∈ X meaning c ∈ C can be chosen to be bounded if f is. �

These last two theorems on smooth extensions and smooth approximations of contin-
uous functions confirm that our visual experience of continuity, that of being very close
to smoothness, is not a misleading one. It is something we can rely on for smoothly
paracompact spaces in general, even when we are beyond hope of visualizing them.

Theorem 3.22 There is a smooth function h : R → [0, 1] for which h|(−∞,1/4] = 0 and
h|[3/4,∞) = 1.

Proof. Consider the functions:

b(x) =

{
e

1
(x−1/4)(x−3/4) x ∈ (1/4, 3/4)

0 x ∈ R− (1/4, 3/4)
(15)

h(x) =
1∫ 3/4

−∞ b(y)dy

∫ x

−∞
b(u)du (16)

The smoothness of b follows from the chain and product rules, which tell us that the
derivatives of the nonzero branch will always be some rational function of x times the
original exponential term, which itself decays to zero as x approaches 1/4 or 3/4 faster
than any rational function can grow at either of those two points.

h must be smooth since it is defined as the integral of a smooth function with compact
support. Note that for all x ∈ (−∞, 1/4], we have that b(x) = 0, and so consequently
h(x) = 0. Similarly, for all x ∈ [3/4,∞), we also have that b(x) = 0, meaning that

h(x) =
1∫ 3/4

−∞ b(y)dy

∫ x

∞
b(u)du = 1 +

1∫ 3/4

−∞ b(y)dy

∫ x

3/4

b(u)du = 1.

Therefore h is indeed a smooth map satisfying our desirata. �
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Theorem 3.23 The connected components of a balanced Watts space are smoothly path-
connected.

Proof. It is sufficient to demonstrate that a balanced Watts space (X,P,C) is locally
smoothly path-connected. This is because the set of all smooth path components will
then be is a disjoint open cover of X, and the existence of non-empty intersections would
allow for the use of the smooth concatenation used later in this proof to show that the
components being intersected weren’t maximal, a contradiction. This allows us to con-
clude that each connected component of our space is equal to one of these smooth path
components.

To proceed with the proof of local smooth path-connection, let x ∈ X, and let Qx ⊂ X
be the set of points y ∈ X such that there is a member p∗ ∈ P for which Dom(p∗) = R and
y, x ∈ p∗(R). Let p ∈ P be such that Ran(p) ∩ Qx 6= ∅, and let z ∈ p−1(Qx) ⊂ Dom(p).
Now Dom(p) is an open subset of a euclidean space, and so there is an open metric ball
Bε(z) of some radius ε > 0 centered at z and contained in Dom(p). Let v ∈ Bε(z), and
note that the straight line γ1(t) = v+ t(z−v) is a smooth curve in Dom(p) with γ1(0) = v
and γ1(1) = z, so that p1 = p◦γ1 is a plot by the second Souriau axiom with p1(0) = p(v)
and p1(1) = p(z). p(z) ∈ Qx, and so without loss of generality there is a plot p2 ∈ P with
p2(0) = p(z), and p2(1) = x by our construction of Qx. Consider the map:

p∗(t) =

{
p1 ◦ h(2t) t ∈

(
−∞, 1

2

]
p2 ◦ h(2t− 1) t ∈

[
1
2
,∞
) (17)

For which p∗(0) = p1(0) = p(v) and p∗(1) = p2(1) = x, where h is the function defined
in theorem 3.22. Due to the fact that h|(−∞,1/4] = 0 and h|[3/4,∞) = 1, and that p1(1) =
p(z) = p2(0), p∗ is constant and equal to p(z) on the open interval

(
3
8
, 5
8

)
. It is equal to

the plots p1 ◦ h and p2 ◦ h on the intervals
(
−∞, 1

2

)
and

(
1
2
,∞
)

respectively. Therefore
by the first and second Souriau axioms and the fact that

{(
−∞, 1

2

)
,
(
3
8
, 5
8

)
,
(
1
2
,∞
)}

is an
open cover of [0, 1] on which p∗’s restrictions are equal to constant maps or restrictions of
members of P , we may conclude that p∗ ∈ P .

Therefore p(Bε(z)) ⊂ Qx by Qx’s definition, and so Bε(z) ⊂ p−1(Qx). This means that
p−1(Qx) is an open set, which since the only requirement on p was that p−1(Qx) 6= ∅, we
can conclude that Qx is open in the plot topology. Since our Watts space is balanced by
hypothesis, Qx is also open in the coplot topology with which our space has been equipped.
Therefore our Watts space (X,P,C) is indeed locally, smoothly path-connected. �

This proof is adapted from that of lemma 1.8 in [4], where Laubinger demonstrated
that Souriau spaces, which always bear their plot topology, are locally-path connected.
The modifications introduced here are the halting functions, used to ensure that the
concatenation of the two paths was smooth, and the requirement that the plot and coplot
topologies coincide, which allows for the openness test used in the argument to be valid.
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4 Conclusion

The category of Watts spaces and smooth maps, bearing the object class suggested by
Watts, and which contains the Souriau, Sikorski, and Frölicher spaces as full subcategories,
was described. It was shown that the Kolmogorov and Hausdorff separation axioms are
equivalent on Watts spaces. The existence of smooth approximations to continuous maps
into euclidean spaces, and extensions to smooth maps into euclidean spaces was also
shown, along with a condition which is sufficient to guarantee that connected components
of the objects belonging to this category are smoothly path-connected.
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