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Abstract - Algebraic equations over finite fields and over finite rings have been of interest
due to their beautiful structures, usefulness in applications, and links with other mathemat-
ical objects. In this paper, the equation X2 − Y 2 = α is studied over the ring of integers
modulo p2, where p is a prime number and α is an arbitrary constant. Through a matrix
method, the solutions of this equation are given together with an explicit formula for the
number of solutions.
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1 Introduction

Key problems in the study of algebraic equations deal with the solvability, solutions, num-
ber of solutions, and complexity of solving methods. Some algebraic equations over finite
fields have been studied in [5] including the simple but interesting equation X2−Y 2 = α.
The enumeration of solutions of this equation has been completely determined. The Dio-
phantine equation X2 − Y 2 = α has been described in [3, Theorem 6.43]. Recently, the
ring Zp2 and algebraic equations over Zp2 have become of interest due to their applications
(see [1], [2] and references therein). In this article, we focus on this equation over the ring
Zp2 of integers modulo p2, where p is a prime number. Precisely, we show that

X2 − Y 2 = α (1)

over Zp2 has a solution for all elements α ∈ Zp2 except p = 2 = α. Subsequently, the
solutions and the number solutions of (1) are given for all existing cases.

We first observe that finding the solutions of X2 − Y 2 = α is equivalent to that of

determining the matrices

[
a b
b a

]
whose determinant is

α = a2 − b2 = det

([
a b
b a

])
.
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Equivalently, det

([
a b
b a

])
= α if and only if the pair (a, b) is a solution of X2−Y 2 = α.

Hence, a matrix method and properties of the determinant are used in this study. Some
preliminary results are recalled and proved in Section 2. The solutions and the number
of solutions of X2−Y 2 = α are given in Section 3. Summary and discussion are provided
in Section 4.

2 Preliminaries

For a given prime number p, denote by Zp2 the ring of integers modulo p2. An element
a ∈ Zp2 is called a unit or an invertible element if there exists an element b ∈ Zp2 such
that ab = 1. In this case, b is unique and it is called the inverse of a. Denote by a−1

the inverse of a and denote by U(Zp2) the set of units in Zp2 . A nonzero element a ∈ Zp2

is called a zero divisor if there exists a nonzero element b ∈ Zp2 such that ab = 0. Let
ZD(Zp2) denote the set of zero divisors in Zp2 .

The following properties of Zp2 can be derived easily. The reader refers to [4] for more
details.

Lemma 2.1 Let p be a prime. Then U(Zp2) = {a ∈ Zp2|p - a} and |U(Zp2)| = φ (p2) =
p(p− 1), where φ is Euler’s totient map.

Lemma 2.2 Let p be a prime. Then ZD(Zp2) = {a ∈ Zp2 | p|a and a 6= 0} and
|ZD(Zp2)| = p− 1.

From Lemma 2.1 and Lemma 2.2, we have the following fact.

Corollary 2.3 Let p be a prime. Then Zp2 = U(Zp2)∪ZD(Zp2)∪ {0}, where the unions
are disjoint.

The following two lemmas are key to determine the solutions of (1) in Section 3.

Lemma 2.4 Let p be a prime. Then a 6= −a for all a ∈ U(Zp2).

Proof. Let a ∈ U(Zp2). Assume that a = −a. Then 2a = 0. Since 2 6= 0 in Zp2 , it
follows that a ∈ ZD(Zp2), a contradiction. Therefore, a 6= −a for all a ∈ U(Zp2). �

For p = 2, a solution of (1) does not need to exist (see Theorem 3.3). For each odd
prime p and α ∈ Zp2 , the existence of a solution of (1) is guaranteed by the following
lemma.

Lemma 2.5 Let p be an odd prime and α ∈ Zp2. Then there exist x, y ∈ Zp2 such that
α = x2 − y2.

Proof. We write α = a + pb, where 0 ≤ a ≤ p − 1 and 0 ≤ b ≤ p − 1. Since p ≥ 3, it
follows that 2 and 4 are units in Zp2 by Lemma 2.1. We consider the following two cases.
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Case 1: a+ 4−1 ∈ U(Zp2). Choose x = a+ 4−1 + 2−1(a+ 4−1)−1bp and y = a−4−1. Then

x2 − y2 = (a+ 4−1 + 2−1(a+ 4−1)−1bp)2 − (a− 4−1)2

= a2 + 2−1a+ 4−2 + bp− a2 + 2−1a− 4−2

= a+ bp

= α.

Case 2: a+ 4−1 /∈ U(Zp2). Then a+ 4−1 = kp for some 0 ≤ k ≤ p− 1 and −2(4−1) is a
unit in Zp2 . It follows that a− 4−1 = kp− 2(4−1) ∈ U(Zp2). By setting x = a + 4−1 and
y = a− 4−1 + 2−1(a− 4−1)−1bp, it can be deduced that

x2 − y2 = (a+ 4−1)2 − (a− 4−1 + 2−1(a− 4−1)−1bp)2

= a2 + 2−1a+ 4−2 − a2 + 2−1a− 4−2 + bp

= a+ bp

= α.

As desired, for each α ∈ Zp2 , there exist x, y ∈ Zp2 such that α = x2 − y2. �

The eigenvalues and eigenvectors of

[
a b
b a

]
over Zp2 are determined in the next lemma.

These results are useful in the study of the solutions of (1) in Theorem 3.3.

Lemma 2.6 Let p be a prime and let a, b ∈ Zp2. Then the following statements hold:

1. The eigenvalues of

[
a b
b a

]
are a+ b and a− b.

2.

[
1
1

]
and

[
1
−1

]
are eigenvectors of

[
a b
b a

]
corresponding to a+b and a−b,respectively.

Proof. From the characteristic equation

0 = det

([
a b
b a

]
− λI2

)
= (λ− (a− b))(λ+ (a+ b)),

it follows that are a+ b and a− b are the eigenvalues of

[
a b
b a

]
.

The second statement can be verified directly from 1. �
For an odd prime p, the next corollary can be deduced using direct calculation and

Lemma 2.6.

Corollary 2.7 Let p be an odd prime and let a, b ∈ Zp2. Then[
a b
b a

]
= 2−1

[
1 1
−1 1

] [
a− b 0

0 a+ b

] [
1 −1
1 1

]
.
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For convenience, let Sp2(α) denote the set of solutions of X2−Y 2 = α and let sp2(α) =
|Sp2(α)| be the number of solutions of X2 − Y 2 = α. In order to apply a matrix method,
let

Cp2(α) =

{[
a b
b a

] ∣∣∣∣a, b ∈ Zp2 and det

([
a b
b a

])
= α

}
.

As discussed above, (a, b) ∈ Sp2(α) if and only if

[
a b
b a

]
∈ Cp2(α). Hence, the number of

solutions of X2 − Y 2 = α is sp2(α) = |Cp2(α)|.

3 Solutions of X2 − Y 2 = α in

In this section, we focus on the solutions of X2 − Y 2 = α. The study is given in terms of
matrices in Cp2(α) separated in 3 cases where α = 0, α is a zero divisor, and α is a unit.

First, we consider solutions of X2 − Y 2 = 0.

Theorem 3.1 Let p be a prime. Then sp2(0) = p(3p− 2).

Proof. Let A =

[
a b
b a

]
∈ Cp2(0). Them det(A) = a2 − b2 = 0

Case 1: a ∈ Zp2 \ U(Zp2). We have a2 = 0 which implies that b2 = a2 = 0. Equivalently,
b ∈ ZD(Zp2) ∪ {0}. There are p choices of a and p choices of b by Lemma 2.1. Hence,
there are p2 choices of A.
Case 2: a ∈ U(Zp2). Then there are p(p − 1) choices of a by Lemma 2.2. In this case,
we have b2 = a2 which implies that (b− a)(b+ a) = 0.

For p = 2, by inspection, the choices of (a, b) are (1, 1), (1, 3) = (1,−1), (3, 3) and
(3, 1) = (3,−3). Consequently, we have 4 = 2p(p− 1) choices of A.

Assume that p is odd. Suppose that b 6= a and b 6= −a. Since (b− a)(b+ a) = 0, b− a
and b+a are zero divisors which implies that p|(b−a) and p|(b+a) by Lemma 2.1. Then
2a = (b+ a)− (b− a) is divisible by p. Since p is odd, it follows that p|a. By Lemma 2.1,
a is not a unit which is a contradiction. Hence, we have b = a or b = −a. Since a 6= −a
by Lemma 2.4, there are 2 choices for b. Consequently, there are 2p(p− 1) choices of A.

Therefore,

sp2(0) = |Cp2(0)| = p2 + 2p(p− 1) = p(3p− 2).

as desired. �
From the proof of Theorem 3.1, the solutions of X2 − Y 2 = 0 can be summarized in

the next corollary.

Corollary 3.2 Let p be a prime. Then the set of solutions of X2 − Y 2 = 0 is

Sp2(0) = {(a, b) | a, b ∈ ZD(Zp2) ∪ {0}} ∪ {(a,±a) | a ∈ U(Zp2)}.

Next, we focus on the case where α is a zero divisor in Zp2 . The solutions ofX2−Y 2 = p
are determined in Theorem 3.3 and extended to the case where α is an arbitrary zero
divisor in Theorem 3.5.
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Theorem 3.3 Let p be a prime. Then

sp2(p) =

{
0 if p = 2,

2p(p− 1) if p ≥ 3.

Proof. By inspection, a2 − b2 6= 2 for all a, b ∈ Z4. Then X2 − Y 2 = 2 has no solutions
in Z4 which implies that s4(2) = 0.

Assume that p ≥ 3. In this case, 2 is a unit in Zp2 . Let

Sp =

{[
x 0
0 px−1

]
,

[
px−1 0

0 x

] ∣∣∣∣x ∈ U(Zp2)

}
.

Using the decomposition in Corollary 2.7, let f : Sp → Cp2(p) be the map defined by[
r 0
0 s

]
7→ 2−1

[
1 1
−1 1

] [
r 0
0 s

] [
1 −1
1 1

]
= 2−1

[
r + s s− r
s− r r + s

]
.

Let A =

[
a b
b a

]
∈ Cp2(p). Then p = det(A) = a2 − b2 = (a− b)(a + b) which implies

that a 6= b and a 6= −b.
Case 1: a− b ∈ U(Zp2). Choose r = a− b and s = p(a− b)−1 = a+ b. Then[

r 0
0 s

]
=

[
a− b 0

0 a+ b

]
=

[
a− b 0

0 p(a− b)−1

]
∈ Sp

and

f

([
r 0
0 s

])
= f

([
a− b 0

0 a+ b

])
= 2−1

[
1 1
−1 1

] [
a− b 0

0 a+ b

] [
1 −1
1 1

]
= 2−1

[
2a 2b
2b 2a

]
= A.

Case 2: a− b /∈ U(Zp2). Then a− b ∈ ZD(Zp2). Since (a− b)(a+ b) = p, it follows that
a+ b ∈ U(Zp2). Choose s = a+ b and r = p(a+ b)−1 = a− b. We have[

r 0
0 s

]
=

[
a− b 0

0 a+ b

]
=

[
p(a+ b)−1 0

0 a+ b

]
∈ Sp

and

f

([
r 0
0 s

])
= f

([
a− b 0

0 a+ b

])
= 2−1

[
1 1
−1 1

] [
a− b 0

0 a+ b

] [
1 −1
1 1

]
=

[
a b
b a

]
= A.
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Hence, f is a surjective map.

Since

[
1 1
−1 1

]
and

[
1 −1
1 1

]
are non-singular and 2 is invertible, the map f is injective.

Therefore, f is a bijection which implies that

sp2(p) = |Cp2(p)| = |Sp| = 2 |U(Zp2)| = 2p(p− 1)

as desired. �
From the proof of Theorem 3.3, the solutions of X2−Y 2 = p are summarized as follows.

Corollary 3.4 Let p be a prime. Then S4(2) = ∅ and

Sp2(p) = {2−1(a+ pa−1, pa−1 − a), 2−1(a+ pa−1, a− pa−1) | a ∈ U(Zp2) }

for all odd primes p.

For p = 2, 2 is the only zero divisor in Z4 and s4(2) = 0 is determined in Theorem 3.3.
In the following theorem, we focus on sp2(α) for all p ≥ 3 and for all zero divisors α in
Zp2 .

Theorem 3.5 Let p ≥ 3 be a prime. Then sp2(α) = 2p(p− 1) for all α ∈ ZD(Zp2).

Proof. Let α ∈ ZD(Zp2). Then α = kp for some 0 < k < p. By Lemma 2.5, there exist
x, y ∈ Zp2 such that x2− y2 = k ∈ U(Zp2). Let g : Cp2(p)→ Cp2(kp) be a map defined by[

a b
b a

]
7→
[
x y
y x

] [
a b
b a

]
.

Let A = B ∈ Cp2(p) be such that g(A) = g(B). Then

[
x y
y x

]
A =

[
x y
y x

]
B. Since[

x y
y x

]
is invertible, we have A = B which implies that g is injective.

Let A =

[
c d
d c

]
∈ Cp2(kp). Then det(A) = c2 − d2 = kp. Choose

B =
1

x2 − y2

[
x −y
−y x

] [
c d
d c

]
.

Then

det(B) =
1

(x2 − y2)2
(x2 − y2)(c2 − d2) =

1

k2
(k)(kp) = p

which implies that

B =
1

x2 − y2

[
x −y
−y x

] [
c d
d c

]
=

1

x2 − y2

[
xc− yd dx− yc
dx− yc xc− yd

]
∈ Cp2(p)
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and

g(B) =

[
x y
y x

]
1

x2 − y2

[
x −y
−y x

] [
c d
d c

]
=

[
c d
d c

]
= A.

It follows that g is a surjective map.
Hence, g is a bijection and sp2(α) = |Cp2(kp)| = |Cp2(p)| = 2p(p− 1). �
Based on the proof of Theorem 3.5, for each zero divisor α in Zp2 , the solutions of

X2 − Y 2 = α are given in the next corollary.

Corollary 3.6 Let p ≥ 3 be a prime and let α be a zero divisor in Zp2. Then

Sp2(α) =

{
2−1(a+ pa−1,pa−1 − a)

[
x y
y x

]
,

2−1(a+ pa−1, a− pa−1)

[
x y
y x

] ∣∣∣∣a ∈ U(Zp2)

}
,

where x and y are elements in Zp2 such that (x2 − y2)p = α determined in Lemma 2.5.

Finally, we focus on the solutions of X2− Y 2 = α, where α is a unit in Zp2 . We begin
with α = 1 in Theorem 3.7 and extend to an arbitrary unit in Theorem 3.9.

Theorem 3.7 Let p be a prime. Then

sp2(1) =

{
4 if p = 2,

p(p− 1) if p ≥ 3.

Proof. By inspection, we have that (1, 0), (1, 2), (3, 0), and (3, 2) are the solutions of
X2 − Y 2 = 1 over Z4.

Assume that p ≥ 3. In this case, 2 is a unit in Zp2 . Let

Tp =

{[
x 0
0 x−1

] ∣∣∣∣x ∈ U(Zp2)

}
and let f : Tp → Cp2(1) be the map defined by[

x 0
0 x−1

]
7→ 2−1

[
1 1
−1 1

] [
x 0
0 x−1

] [
1 −1
1 1

]
= 2−1

[
x+ x−1 x−1 − x
x−1 − x x+ x−1

]
.

Let A,B ∈ Tp be such that f(A) = f(B). Since 2 is a unit and

[
1 1
−1 1

]
and

[
1 −1
1 1

]
are non-singular, we have A = B which implies that f is an injective map.

Let A =

[
a b
b a

]
∈ Cp2(1). Then 1 = det(A) = a2 − b2 = (a− b)(a+ b). Let x = a− b.

Then x ∈ U(Zp2) and B =

[
x 0
0 x−1

]
∈ Tp. It follows that

f(B) = 2−1

[
a− b+ a+ b a+ b− a+ b
a+ b− a+ b a− b+ a+ b

]
= 2−1

[
2a 2b
2b 2a

]
=

[
a b
b a

]
= A.
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Hence, f is surjective.
Consequently, f is a bijection and

sp2(1) = |Cp2(1)| = |Tp| = |U(Zp2)| = p(p− 1)

which implies that

sp2(1) =

{
4 if p = 2,

p(p− 1) if p ≥ 3

as required. �
The solutions of X2 − Y 2 = 1 are given in the following corollary.

Corollary 3.8 Let p be a prime. Then

S4(1) = {(1, 0), (1, 2), (3, 0), (3, 2)}

and
Sp2(1) = {2−1(a+ a−1, a− a−1) | a ∈ U(Zp2)}

for all primes p ≥ 3.

Theorem 3.7 is now extended to cover the case where α is an arbitrary unit in Zp2 .

Theorem 3.9 Let p be a prime. Then

sp2(α) =

{
4 if p = 2,

p(p− 1) if p ≥ 3

for all α ∈ U(Zp2).

Proof. Let α ∈ U(Zp2). For p = 2, we have u ∈ {1, 3}. From Theorem 3.7, we have
sp2(1) = 4. By inspection, the solutions of X2 − Y 2 = 3 are (0, 1), (0, 3), (2, 1), and (2, 3)
which implies that sp2(3) = 4.

Next, assume that p ≥ 3. By Lemma 2.5, there exist x, y ∈ Zp2 such that α = x2− y2.
Let g : Cp2(1)→ Cp2(α) be the map defined by[

a b
b a

]
7→
[
x y
y x

] [
a b
b a

]
.

Let A = B ∈ Cp2(1) be such that g(A) = g(B). Then[
x y
y x

]
A =

[
x y
y x

]
B.

Since

[
x y
y x

]
is non-singular, we have A = B which implies that g is injective.
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Let A =

[
c d
d c

]
∈ Cp2(α). Then det(A) = c2 − d2 = α. Choose

B =
1

x2 − y2

[
x −y
−y x

] [
c d
d c

]
.

Then

det(B) =
1

(x2 − y2)2
(x2 − y2)(c2 − d2) =

1

u2
(u)2 = 1

and

B =
1

x2 − y2

[
x −y
−y x

] [
c d
d c

]
=

1

x2 − y2

[
xc− yd dx− yc
dx− yc xc− yd

]
∈ Cp2(1).

It can be concluded that

g(B) =

[
x y
y x

]
1

x2 − y2

[
x −y
−y x

] [
c d
d c

]
=

[
c d
d c

]
= A.

Thus, g is surjective.
Consequently, g is a bijection and sp2(α) = |Cp2(α)| = |Cp2(1)| = sp2(1). By Theorem

3.7, we therefore have

sp2(α) = sp2(1) =

{
4 if p = 2

p(p− 1) if p ≥ 3

for all α ∈ U(Zp2) �

Corollary 3.10 Let p be a prime and let α ∈ U(Zp2). Then

S4(1) = {(1, 0), (1, 2), (3, 0), (3, 2)}, S4(3) = {(0, 1), (0, 3), (2, 1), (2, 3)},

and

Sp2(α) = {2−1(a+ a−1, a− a−1)

[
x y
y x

]
| a ∈ U(Zp2)}

for all primes p ≥ 3, where x and y are defined in Lemma 2.5.

4 Conclusions

The solutions of X2 − Y 2 = α and their enumeration have been completely determined
over the ring Zp2 through a matrix method. It would be interesting to extend the study
to the ring of integers modulo pk or the ring of integers modulo m, where p is a prime
and k > 2 and m ≥ 2 are integers.
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