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a collection of spaces known as Eilenberg-MacLane spaces. These spaces can be used as
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1 Introduction

A common question in topology is “what is the shape” of a particular topological space?
Further one could ask, how do we tell if two topological spaces have the same shape?
What do we even mean by “same” when describing shapes? One way to start answering
these questions is to say that two spaces have the same shape if one can be continuously
deformed into the other. This is one example of how two spaces can be homeomorphic. In
general, two topological spaces are homeomorphic if there is a continuous map from one
to the other that has a continuous inverse. The map itself is called a homeomorphism.
Many of the continuous maps we know from calculus and other classes are in fact homeo-
morphisms. For example, the map f(x) = ex is a homeomorphism between R and (0,∞)
and stereographic projection provides a homeomorphism between S2 without the north
pole and R2.

While we can determine that two spaces are homeomorphic by finding a specific home-
omorphism, the map is dependent on how we define the spaces themselves. Small changes
to our spaces that do not change the underlying shape (such as increasing the amplitude
of a sine wave or decreasing the radius of a sphere slightly) would require us to write down
a completely different map. Given this we might ask if there are other ways to determine
if two spaces are homeomorphic or, alternatively, is there a way to determine if two spaces
are not homeomorphic?
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To answer this, we need to think more about what it means for two spaces to have the
same shape: What characteristics are inherent? A characteristic that does not change
under homeomorphism is called a topological invariant. Some examples include number
of components, dimension, Euler characteristic, and holes. In theory, topological invari-
ants should be more computable than individual maps, and collections of them should be
sufficient to distinguish certain types of spaces. For example, surfaces can be classified
by two invariants: Euler characteristic and orientation. However, computing them can be
difficult and finding a complete collection only happens in special cases. Regardless, many
are useful for distinguishing spaces, and we will introduce some particularly useful invari-
ants called homology groups. First we start with the idea of holes and the fundamental
group.

One characteristic of the shape of a space is the presence of holes. For example, a
torus has a hole through the middle of it, whereas a sphere does not seem to have any
holes at all. One would expect that holes could be used to distinguish these two spaces,
but how do we define “hole” precisely? To start, we could consider loops in the space, or
more specifically, maps of S1 into the space. A hole can be identified by a loop around it
that is not collapsible (able to be continuously shrunk to a point). For example, in Figure
1, loop a on the torus is not collapsible and identifies the hole through the middle. On the
other hand, all of the loops on the sphere are collapsible and seem to show a lack of holes.
While loops can be used to identify holes, they also identify other structure in the space.
For example, loop b in the torus identifies some empty space inside. The fundamental
group (also known as the first homotopy group) looks at all maps from S1 into the space
and encodes these inherent structures.

Figure 1: Representative Loops on a Sphere and a Torus [8, 9]

The idea of non-collapsible loops can be generalized to higher dimensions by consider-
ing maps of Sn into the space. Specifically, the nth homotopy group of a space is nontrivial
if there is some map of Sn into the space that cannot be collapsed. For example, the iden-
tity map S2 → S2 cannot be collapsed and thus S2 has nontrivial 2nd homotopy group.
While the precise definitions of the homotopy groups are beyond the scope of this paper,
the reader can find them in many algebraic topology books such as [4]. These groups
will be particularly important for defining the spaces we are considering in this paper,
Elienberg-MacLane spaces. However, homotopy groups are hard to compute in general,

the pump journal of undergraduate research 4 (2021), 86–107 87



so after we define our spaces in Section 2, we will define a related but more computable
collection of invariants called homology groups. These groups measure the presence of
voids, and it is these groups that we determine for certain Eilenberg-MacLane spaces.

This paper is structured as follows. We first introduce two models, the bar construc-
tion and the particle model, for a collection of spaces called Eilenberg-MacLane spaces.
These spaces are of interest for many reasons including being used as building blocks for
other spaces and in various computations in topology. We then provide an introduction
to a collection of topological invariants called cellular homology groups and provide some
common but related examples. We then move to computing cellular homology groups
with arbitrary coefficients. Finally, we compute the homology groups for one Eilenberg-
MacLane space in an intuitive and accessible way, and then use the particle model to
assist in determining the cell structure of additional cases of Eilenberg-MacLane spaces
using combinatorial arguments.

2 Eilenberg-MacLane Spaces and the Particle Model

The homotopy groups of a space measure the presence of non-collapsible spheres within
it. Since higher dimensional spheres can often be mapped into a space creating higher
homotopy groups, the homotopy groups of a space are generally quite difficult to compute,
even for spheres, so spaces with relatively few homotopy groups are of interest. One
particular collection of spaces of interest are spaces with a single nontrivial homotopy
group. These spaces are known as Eilenberg-MacLane spaces, and some of them are well
known, for example, a circle, a wedge of spheres, a torus, and RP∞. We note that while
they have simple homotopy groups, they are often infinite dimensional. In this section we
describe two related models for them - the bar construction and the particle model - that
will be useful for visualization and computing the homology groups.

2.1 Modeling Eilenberg-MacLane Spaces With the Bar Construction, BG

An Eilenberg-MacLane space with its nontrivial homotopy group in degree n and iso-
morphic to G is written K(G, n). As an example, the circle S1 is an Eilenberg-MacLane
space: K(Z, 1). Though the following definition allows for an arbitrary abelian group G,
we will focus our attention only on the groups G = Z/pZ, where p is prime. We will
denote Z/pZ by Zp going forward.

Definition 2.1 [1] Let (G, ◦) be an abelian group with group operation ◦. We define

BG =
⋃

n∈Z≥0

(∆n ×Gn)/ ∼,

where ∆n = {(t1, t2, . . . , tn) ∈ Rn | 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1} is the standard simplex,
and the equivalence relation ∼ is such that
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• If gi = e, the identity in G, or if ti = ti+1, then delete ti and combine gi and gi+1

via G’s operation: gi ◦ gi+1.

• If t1 = 0 then t1 and g1 are deleted.

• If tn = 1 then tn and gn are deleted.

We write a point in BG as (t1, . . . , tn)× (g1, . . . , gn) and refer to the ti corresponding
to a group element gi as the group element’s “time coordinate.” If G is discrete, the
space BG, known as the classifying space for G, is a model for K(G, 1). Additionally, BG
provides models for K(G, n), for n > 1, through iteration, as described in Section 2.4.

Adem and Milgram [1] define the following natural addition on BG, which makes BG
an abelian group.

Definition 2.2 We define an addition ∗ : BG × BG → BG such that for two points
(t1, . . . , tp)× (gt1 , . . . , gtp) and (s1, . . . , sq)× (gs1 , . . . , gsq) in BG,(

(t1, . . . , tp)× (gt1 , . . . , gtp)
)
∗
(
(s1, . . . , sq)× (gs1 , . . . , gsq)

)
= (λ1, . . . , λp+q)× (gλ1 , . . . , gλp+q),

where the λi are the ti and si arranged in increasing order.

Example 2.3 Let G = Z3. We have((
1

10
,
1

5
,
1

3

)
× (1, 1, 1)

)
∗
((

1

7
,
1

2

)
× (2, 2)

)
=

(
1

10
,
1

7
,
1

5
,
1

3
,
1

2

)
× (1, 2, 1, 1, 2) .

If we add two points with a matching time component, we need to be a bit more
careful. Using Definition 2.2 and the equivalences in Definition 2.1, we have((

1

2
,
2

3

)
× (1, 2)

)
∗
((

1

3
,
1

2

)
× (2, 1)

)
=

(
1

3
,
1

2
,
1

2
,
2

3

)
× (2, 1, 1, 2)

∼
(

1

3
,
1

2
,
2

3

)
× (2, 2, 2) .

Proposition 2.4 The set (BG, ∗) is an abelian group.

Proof. The additive identity in BG is the unique point ()× (). Since ()× () has no time
elements, we have

((t1, . . . , tn)× (g1, . . . , gn)) ∗ (()× ()) = (()× ()) ∗ ((t1, . . . , tn)× (g1, . . . , gn))

= (t1, . . . , tn)× (g1, . . . , gn).
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Additive inverses in BG are obtained from the additive inverses of elements in G. From
Definition 2.1, we have

((t1, . . . , tn)× (g1, . . . , gn))∗((t1, . . . , tn)× (g−11 , . . . , g−1n ))

= (t1, t1, . . . , tn, tn)× (g1, g
−1
1 , . . . , gn, g

−1
n )

= (t1, . . . , tn)× (g1 ◦ g−11 , . . . , gn ◦ g−1n )

= (t1, . . . , tn)× (e, . . . , e)

= ()× ().

Thus, ((t1, . . . , tn)× (g1, . . . , gn))−1 = (t1, . . . , tn)× (g−11 , . . . , g−1n ).
Since the sum of points in BG is completely determined by arranging the time elements

in increasing order, we immediately get both associativity and commutativity. This is
clear if all of the time elements are distinct, but perhaps less clear if there are matching
time elements. If ever there are matching time elements, associativity and commutativity
are both inherited from G under the equivalence relation in Definition 2.1. �

2.2 Cells

We now define collections of points called cells which will be needed when we calculate
the homology groups below. A cell in BG is an element from (Gr {e})n associated to a
copy of the open standard simplex ∆n. We can denote a cell by its group elements using
what we call bar notation: [g1|g2| · · · |gn] (see [3]). Categorizing cells by dimension will be
necessary when computing the homology of a CW complex so we now provide definitions
for dimension.

Definition 2.5 [3] If G is a graded group, let d(gi) be the dimension of gi in G. If G is
not a graded group, such as G = Zp, the dimension of every element in G is 0. For a cell
[g1| · · · |gm] ∈ BG, we define the tensor dimension of [g1| · · · |gm] by

dt[g1| · · · |gm] = d(g1) + · · ·+ d(gm).

We define the simplicial dimension of [g1| · · · |gm] by

ds[g1| · · · |gm] = m.

Finally, we define the total dimension of [g1| · · · |gm] to be

dB[g1| · · · |gm] = dt[g1| · · · |gm] + ds[g1| · · · |gm].

An n-cell in BG is a cell with total dimension n.

For G not a graded group, an n-cell in BG consists of all points with a particular
ordering of n group elements and distinct time coordinates. Since each cell is determined
by the ordered list of group elements, we will refer to the cell by just the the collection of
n ordered group elements with bars between them. Note, the tensor dimension will not
be needed until we iterate the construction. We now provide some examples of cells in
BG for G = Z2 and G = Z3.
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Example 2.6 Let G = Z2 = 〈1〉. Since there is only one nonzero element in Z2, each
n-cell in BZ2 is the collection of points of the form (t1, . . . , tn) × (1, . . . , 1), where 0 <
t1 < · · · < tn < 1. The following table illustrates how we use bar notation to represent
cells.

n n-cells
0 []
1 [1]
2 [1|1]
3 [1|1|1]
4 [1|1|1|1]

Example 2.7 Let G = Z3. Since there are two nonzero elements in Z3, we have more
variety in the form of our n-cells, which we see in the following table.

n n-cells
0 []
1 [1], [2]
2 [1|1], [1|2], [2|1], [2|2]
3 [1|1|1], [1|1|2], [1|2|1], [2|1|1], [1|2|2], [2|1|2], [2|2|1], [2|2|2]

These examples suggest a way to count the number of n-cells in BZp. Since each n-cell
in BZp is defined by a unique element in (Zp r {0})n, the cardinality of (Zp r {0})n is
also the number of n-cells in BZp. Since the cardinality of (Zp r {0})n is (p − 1)n, we
have the following observation.

Remark 2.8 The number of n-cells in BZp is (p− 1)n.

2.3 The Particle Model

We now introduce the particle model for BZp, which will aid in visualizing the bar nota-
tion, determining the number of cells in the iterated bar construction in Section 2.4, and
computing the homology of BZp in Section 5.1. In this section we focus on the particle
model for BZ2. In the next section we generalize it further to BZp.

The particle model for points in BZp represents (t1, . . . , tn) × (g1, . . . , gn) ∈ BZp by
n marks on the unit interval at each time coordinate. The ith mark is labeled above
by the corresponding group element gi and below by the corresponding time coordinate
ti ∈ [0, 1]. For example, in the particle model, the point ((1

3
, 2
3
)× (1, 1)) looks like

1

1
3

2
3

1
.
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For points in BZ2, we leave off the group elements since there is only one nontrivial
group element in Z2. The addition defined on BZ2 can now be visualized: the addition on
BZ2 consists of placing all of the points on a single unit interval in their correct locations.
For example,(

1

10
,
1

2

)
× (1, 1) ∗

(
1

3
,
2

3

)
× (1, 1) =

(
1

10
,
1

3
,
1

2
,
2

3

)
× (1, 1, 1, 1) ,

would be represented as

*
1
10

1
2

=
1
3

2
3

.
1
10

1
2

1
3

2
3

An n-cell in BZp, represented by [g1| · · · |gn] in the bar notation, can by represented in
the particle model by placing the n ordered group elements on the unit interval. Notice
that, just as with the bar construction, the particle model for cells disregards the time
coordinates.

The table below shows the n-cells for BZ2 in both the bar notation and the particle
model.

n Bar notation Particle model
0 []
1 [1]
2 [1|1]
3 [1|1|1]
4 [1|1|1|1]

2.4 Iterating the Bar Construction

Recall that in Definition 2.1, the only restriction on G was that it be abelian. By Theorem
2.4, BG is an additive abelian group, and thus we may iterate this construction so that

B(BG) = B2G =
⋃

n∈Z≥0

(∆n × (BG)n)/ ∼,

where ∼ is the same equivalence relation from Definition 2.1. In general, an element in
B2G is of the form (s1, . . . , sm)×(G1, . . . , Gm), where each Gm is of the form (t1, . . . , tmk

)×
(g1, . . . , gmk

). The bar notation and particle model extend naturally to B2G. A cell in
B2G is an element from (BGr{e})n associated to a copy of the open standard simplex ∆n.
The dimension of a cell in B2G is then its simplicial dimension plus its tensor dimension,
but we note that the tensor dimension is the sum of the simplicial dimensions of each Gi,
as specified in Definition 2.5.

Example 2.9 The cell [G1|G2] = [[1|1]|[1|1|1]] in B2Z2 has tensor dimension dt[G1|G2] =
d(G1) + d(Gm) = 2 + 3 = 5 and simplicial dimension ds[G1|G2] = 2. Its total dimension
is then 7 and the cell is a 7-cell.
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The particle model for B2G then depicts a point as a collection of points from BG
vertically within the unit square. The time coordinates associated to each Gi are on the
horizontal axis and the time coordinates associated to the gj within a specific Gi are on
the vertical axis. When considering the n-cells, we drop the specific time coordinates, and
depict the cells from the particle model for BG vertically in the unit square. Since the
particle model for points requires a lot of labeling, we predominantly use the model for
cells.

Example 2.10 Here we see the particle model for the 7-cell [[1|1]|[1|1|1]] in BZ2.

We also note that you can continue to iterate this construction so that B(Bn−1G) =
BnG for any integer n > 1. The bar notation and particle model extend as expected. For
example, the particle model for cells of B3G consists of cells from the particle model of
B2G arranged in the unit cube.

Remark 2.11 There are no 1-cells in B2G.

In [3], Eilenberg and MacLane show thatBnG has no cells of dimension d for 0 < d < n.
We provide a short proof by contradiction for the case B2G. Suppose that we have a 1-
cell. Such a cell would necessarily be of the form [g], where the total dimension of g in
BG is 0, as this would give us simplicial dimension 1 and tensor dimension 0, and so
our cell would have total dimension 1. However, the only element in BG that has total
dimension 0 is [], which is the identity in BG. By Definition 2.1, our cell is equivalent to
a 0-cell in B2G. Thus we have our contradiction.

For BZ2 we can determine the number of cells in each dimension using the particle
model, since the dimension of a cell can be found by adding the number of vertical lines
to the total number of points on the vertical lines. We can also use the particle model to
determine the number of cells in each dimension for BZp.

Example 2.12 In the following table, we give the particle model representation for all
n-cells in B2Z2, for 0 ≤ n ≤ 6.
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n n-cells Number of n-cells

0 1

1 ∅ 0

2 1

3 1

4 2

5 3

6 5

The number of n-cells in B2Z2 appears to be a Fibonacci number. This is in fact the
case.

Theorem 2.13 The number of n-cells in B2Z2 is Fn−1, where Fn is the nth Fibonacci
number, with F0 = 0 and F1 = 1.

Proof. Let fn be the number of n-cells in B2Z2. Given a particular n-cell, look at
the rightmost element in the particle model representation of the cell. If the rightmost
element is a line with two or more points, removing a point produces an (n − 1)-cell in
B2Z2, of which there are fn−1. If the rightmost element is a line with only one point, then
removing that point also requires us to remove the line since an empty line represents the
identity in BZ2. Thus, if the rightmost element is a line with a single point, removing
that point produces an (n − 2)-cell in B2Z2, of which there are fn−2. Summing over all
possibilities, we find that fn = fn−1 + fn−2. From Example 2.12, we see that our initial
terms are f1 = 0 and f2 = 1. With an index shift, we have our desired result: the number
of n-cells in B2Z2 is fn = Fn−1. �

A common combinatorial interpretation of the Fibonacci numbers is that Fn+1 is the
number of tilings of a 1 × n board with squares and dominoes. In our proof of the
previous theorem, we may think of a line with a single dash as a “domino” and any
additional dashes after the first as “squares”. There is a natural extension of our proof
for the previous theorem to counting the number of n-cells in B2Zp for any prime p.

Theorem 2.14 Let p be prime. Let Sn be the number of n-cells in B2Zp. Then Sn
is given by the recursion (p − 1)Sn−1 + (p − 1)Sn−2 with initial conditions S1 = 0 and
S2 = p− 1.

Proof. Let Sn denote the number of n-cells in B2Zp. Given a particular n-cell, look at
the rightmost element in the particle model representation of that cell. If the rightmost
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element in the cell is a line with 2 or more symbols, removing one produces an (n−1)-cell
in B2Zp, of which there are Sn−1. However, there are p − 1 different symbols that we
could have removed, one for each of the p − 1 nonzero elements in Zp. Thus, there are
(p− 1)Sn−1 n-cells in B2Zp whose rightmost element is a line with two or more symbols.
If instead the rightmost element in the n-cell is a line with one symbol, then there are
p − 1 possibilities for the one symbol and removing it produces an (n − 2)-cell in B2Zp,
of which there are Sn−2. Thus, there are (p − 1)Sn−2 n-cells in B2Zp whose rightmost
element is a line with a single symbol. Summing over all possibilities, we find that the
number of n-cells in B2Zp is Sn = (p− 1)Sn−1 + (p− 1)Sn−2. By Theorem 2.11, S1 = 0.
By Definitions 2.1 and 2.5, a 2-cell in B2Z2 is of the form [g] where g is a 1-cell in BZp.
By Theorem 2.8, there are p− 1 1-cells in BZp. Thus, S2 = p− 1. �

3 Cellular Homology

Now that we have seen some of the basic structure of BZp, our goal is to compute a its
homology groups. To do this, we provide some intuition for homology followed by a brief
introduction to cellular homology and how it may be computed for simple, but related,
examples.

Homotopy groups measure the presence of holes, or non-contractible spheres within a
space, and while useful, they can often be hard to compute. We turn now to a related
but different topological invariant that measures the presence of voids, or emptiness, in
a space. To build a bit of intuition for how we think of detecting n-dimensional voids in
a space, let us consider how to detect 2-dimensional voids. To do this we can think of
placing all possible loops in our space and checking whether or not each loop bounds a
2-dimensional disk in the space. If a loop bounds a 2-dimensional disk, then we have not
detected a void, but if the loop does not bound a 2-dimensional disk, then we have detected
a void. The process for detecting (n+1)-dimensional voids is similar, except now we think
of embedding copies of Sn in our space and checking if they bound (n + 1)-dimensional
disks.

In Figure 1 in Section 1, we have the sphere and the torus with representative loops
placed on each. On the sphere, we can see that each of the three loops is the boundary
of some 2-dimensional disk embedded in the sphere and so those loops do not detect any
voids. On the torus, loops a and b do not bound 2-disks and thus loops a and b bound
2-dimensional voids in the torus. We can see that they bound two distinct voids because
neither a nor b can be continuously deformed into the other. This suggests that the torus
has at least two 2-dimensional voids, and we hypothesize that the sphere has none.

In general, we cannot analyze all possible loops embedded in a given space. Instead,
we add structure to our space so that systematically detecting voids becomes, in theory,
computationally feasible. One way to do this is to build the space by gluing together
n-balls via “attaching maps”. A space constructed in this way is called a CW complex
(defined in Appendix A). This additional structure allows us to systematically analyze
how Sn can be embedded into the space and define an algebraic topological invariant
called homology that measures the number of (n+ 1)-dimensional voids in the space. The
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homology we calculate using the CW complex structure is called cellular homology. The
definitions given in Sections A and 3.1 are standard and the structure given here most
closely follows that given by Massey in [6]. In Section 3.2, we use cellular homology to
show that S2, T , and RP 2 are not homeomorphic by showing that their homology groups
are not the same.

The n-cells in BG defined in the previous section provide a CW structure for Eilenberg-
MacLane spaces, and this is the structure we will use to compute their cellular homology in
Section 5.2. We first go through the definitions needed for cellular homology and provide
examples of computing cellular homology groups. While the examples are standard, the
process used to compute homology will provide a good foundation for when we shift to
Eilenberg-MacLane spaces.

3.1 The Homology of CW Complexes

Definition 3.1 Let X be a CW complex. The nth chain group of X, denoted Cn(X),
is the free abelian group generated by the n-cells of X. Recall that the free abelian group
generated by the n-cells of X is the group consisting of all linear combinations of the
n-cells of X with coefficients in Z. An element of Cn(X) is called an n-chain.

The characteristic map of a cell determines the orientation and boundary of that
cell. Throughout, we will not be concerned with defining the characteristic maps for
our spaces and we will work with CW complexes where the characteristic maps, or the
necessary information they give, is clear.

For an n-cell σ, its boundary ∂nσ is the sum of its (n−1)-dimensional faces (where the
sign indicates the orientation of the face). Given the boundaries of the n-cells of a CW
complex X, we may extend the boundary map linearly to all of Cn(X) to form a group
homomorphism.

Definition 3.2 For a CW complex X with Cn(X) = 〈σ0, σ1, . . . , σk〉, we define the nth
boundary homomorphism ∂n : Cn(X)→ Cn−1(X) as the linear extension

∂nσ = ∂n

(
k∑
i=0

αiσi

)
=

k∑
i=0

αi∂n(σi),

where σ ∈ Cn(X).

We note that the boundary of a vertex is taken to be 0. The following lemma is well
known and a proof is given in Munkres [7].

Lemma 3.3 For a CW complex X, ∂n−1 ◦ ∂n is the zero homomorphism.

Lemma 3.3 implies that im ∂n+1 is a normal subgroup of ker ∂n, and thus we can make
the following definition.

Definition 3.4 The nth homology group of a CW complex X is

Hn(X) =
ker ∂n

im ∂n+1

.
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We note that ker ∂n detects n-cycles, or embedded n-spheres, in our space. Homology
then identifies the cycles that do not bound an (n+ 1)-disk, and hence detects the voids
we were looking for. The rank of H0(X) is the number of path connected components of
X and the rank of Hn(X) is the number of unique (n+ 1)-dimensional voids in our space.
Notice that if X is a CW complex with no n-cells, then Hn(X) = {0}.

Theorem 3.5 [7] If two CW complexes X and Y are homeomorphic, then they have the
same sequence of homology groups.

The above theorem shows that the sequence of homology groups is a topological in-
variant. Furthermore, the homology of a topological space X is independent of the CW
structure used to calculate the groups. This follows from an isomorphism between the
cellular homology groups and the homology groups arising from a different construction,
known as singular homology, that does not rely on the CW structure chosen (see [4]).

3.2 Examples of Computing Cellular Homology

In this section we compute the homology of the torus and the projective plane as examples
of cellular homology. In both cases we use a CW structure that arises from thinking about
each space as a quotient of the unit square. We additionally determine the homology of
the 2-sphere in the appendix using a CW structure that arises in a different way. We
note that these examples are directly related to Eilenberg-MacLane spaces - the torus is
K(Z× Z, 1) and an infinite version of the projective plane is RP∞ = K(Z2, 1).

Example 3.6 (Torus) We will use T to denote the torus constructed as a quotient space
of I × I and with the CW complex structure shown in Figure 2.

v B v

A

v B v

AF

Figure 2: The torus with a CW complex structure.

Our chain groups for T are C0(T ) = 〈v〉, C1(T ) = 〈A,B〉, C2(T ) = 〈F 〉, and Cn(T ) =
{0} for all n > 2. Computing the boundary maps, we have ∂0v = 0, ∂1A = ∂1B = v−v =
0, and ∂2F = B −A−B +A = B −B +A−A = 0. Thus, the homology groups for the
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torus are

H0(T ) =
ker ∂0
im ∂1

=
〈v〉
{0}

= 〈v〉 ∼= Z,

H1(T ) =
ker ∂1
im ∂2

=
〈A,B〉
{0}

= 〈A,B〉 ∼= Z× Z,

H2(T ) =
ker ∂2
im ∂3

=
〈F 〉
{0}

= 〈F 〉 ∼= Z,

Hn(T ) = {0} for n > 2.

Example 3.7 (Projective Plane) The real projective plane, RP 2, is the quotient space
obtained from identifying edges of the unit square as in Figure 3.

w B v

A

v B w

AF

Figure 3: The real projective plane with a CW complex structure.

The chain groups are thus C0(RP 2) = 〈v, w〉, C1(RP 2) = 〈A,B〉, C2(RP 2) = 〈F 〉, and
Cn(RP 2) = {0} for n > 2. By definition, ker ∂0 = 〈v, w〉. We have ∂1A = v −w = −∂1B,
so im ∂1 = 〈v − w〉. Since the rank of C1(RP 2) is two and the rank of im ∂1 is one, we
know that the kernel of ∂1 must have rank one. To determine what elements are in ker ∂1,
suppose that xA+ yB ∈ C1(RP 2) is an element of ker ∂1. Then

0 = ∂1(xA+ yB) = x∂1A+ y∂1B = x(v − w) + y(w − v) = (x− y)(w − v).

Thus, x = y and we conclude ker ∂1 = {x(A+B) |x ∈ Z} = 〈A+B〉. Finally,

∂2F = B + A+B + A = 2(A+B),

and so im ∂2 = 〈2(A+B)〉. Since the rank of C2(RP 2) and im ∂2 are the same, we must
conclude that ker ∂2 = {0}. Thus, the homology groups for the projective plane are

H0(RP 2) =
〈v, w〉
〈v − w〉

∼= 〈w〉 ∼= Z,

H1(RP 2) =
〈A+B〉
〈2(A+B)〉

∼= Z2,

Hn(RP 2) = {0} for n ≥ 2.

We may interpret H1(X) ∼= Z2 as meaning there is a loop bounding a 2-dimensional
void in the real projective plane that vanishes if we traverse it twice.
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We can now compare the homology groups for S2, T , and RP 2. Note that the calcu-
lation of the homology groups of S2 is contained in the appendix.

S2: Z, {0} , Z, {0} , {0} , . . .
T : Z, Z× Z, Z, {0}, {0}, . . .

RP 2: Z, Z2, {0}, {0}, {0}, . . .

Since the sequences of homology groups are different for all three spaces, we see that no
two of them are homeomorphic. Further we see the presence of the two 2-dimensional
voids in first homology group of T and the lack of any 2-dimensional voids in the first
homology group of S2.

We note that homology groups can only determine when two spaces are not homeo-
morphic; they are not a complete set of topological invariants and therefore cannot be
used to determine if two spaces are homeomorphic.

4 Homology With General Coefficients

In the previous section, we made a specific choice to define chain groups with coefficients
in Z. There is a natural generalization of homology theory in which the chain groups
have coefficients from any abelian group G. The algebra involved in computing homology
can be greatly simplified with certain coefficient groups, as we demonstrate here, and
the results can often be translated back to integer coefficients using universal coefficient
theorems.

Definition 4.1 [7] Let X be a CW complex and G an abelian group. The nth chain
group of X with coefficients in G, denoted Cn(X;G), is the set of all linear combi-
nations of n-cells in X with coefficients from G.

Notice that if X has k n-cells, then Cn(X;G) ∼= Gk.

Definition 4.2 [7] We define the boundary map ∂n : Cn(X;G) → Cn−1(X;G) by the
G-linear extension of the boundary of an n-cell; that is, for an n-cell σ and for g ∈ G

∂n(gσ) = g(∂nσ).

The nth homology group of X with coefficients in G is thus defined as

Hn(X;G) =
ker ∂n

im ∂n+1

.

Example 4.3 (Torus) We repeat Example 3.6 with Z2-coefficients. The chain groups
for T are now

C0(T ;Z2) = 〈v〉 ∼= Z2,

C1(T ;Z2) = 〈A,B〉 ∼= Z2 × Z2,

C2(T ;Z2) = 〈F 〉 ∼= Z2,
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and Cn(T ;Z2) = {0} for all n > 2. Computing the boundary maps, we have, as before,
∂0v = 0, ∂1A = ∂1B = 0, and ∂2F = 0. Thus, the homology groups for the torus with
Z2-coefficients are

H0(T ;Z2) =
〈v〉
{0}

= 〈v〉 ∼= Z2,

H1(T ;Z2) =
〈A,B〉
{0}

= 〈A,B〉 ∼= Z2 × Z2,

H2(T ;Z2) =
〈F 〉
{0}

= 〈F 〉 ∼= Z2,

Hn(T ;Z2) = {0} for n > 2.

Example 4.4 (Projective plane) We repeat Example 3.7 with Z2-coefficients. The
chain groups are now

C0(RP 2;Z2) = 〈v, w〉 ∼= Z2 × Z2,

C1(RP 2;Z2) = 〈A,B〉 ∼= Z2 × Z2,

C2(RP 2;Z2) = 〈F 〉 ∼= Z2,

and all others are {0}. As before, ker ∂0 = 〈v, w〉. We now have ∂1A = v +w = ∂1B, and
so im ∂1 = 〈v + w〉. Again, ker ∂1 must have rank one. In this case, if xA+yB ∈ C1(RP 2)
is also an element of ker ∂1, then

0 = ∂1(xA+ yB) = x∂1A+ y∂1B = x(v + w) + y(v + w) = (x+ y)(w + v),

which implies x ≡ y (mod 2). Thus, ker ∂1 = {x(A+B) |x ∈ Z2} = 〈A+B〉. Finally,
we see a stark contrast when using Z2-coefficients when computing im ∂2,

∂2F = B + A+B + A = 2(A+B) ≡ 0.

Thus im ∂2 = {0} and ker ∂2 = 〈F 〉 ∼= Z2. Therefore, the homology groups for RP 2 with
Z2-coefficients are

H0(RP 2;Z2) =
〈v, w〉
〈v + w〉

∼= Z2,

H1(RP 2;Z2) =
〈A+B〉
{0}

∼= Z2,

H2(RP 2;Z2) =
〈F 〉
{0}
∼= Z2

Hn(RP 2;Z2) = {0} for n > 2.

Notice that in the computation with Z2-coefficients, the algebra was easier than with
Z-coefficients. In particular, we did not have to worry about the signs when finding
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ker ∂1. While this simplification was not substantial, this is not the case in situations
with significantly more complicated algebra (such as those in following sections). Notice
that for real projective space, H2(RP 2;Z) = {0} shows the lack of a three-dimensional
void. With Z2-coefficients, H2(RP 2;Z2) ∼= Z2 does not show the absence of this void. The
homology with Z2-coefficients does hint at the twisting of the unit square when identifying
opposite edges, however. In addition, homology with Z2-coefficients can still be used to
distinguish all three spaces as before. Further, homology groups with Zp coefficients have
more structure and nicer properties, some of which we will see in the Eilenberg-MacLane
examples.

5 The Homology of Eilenberg-MacLane Spaces

5.1 Boundary Maps for the nth Chain Group of BG

The nth chain group of BG, Cn(BG;G), is generated by the n-cells of BG with coefficients
in G. As was the case when defining the dimension of a cell in BG, there are two boundary
maps that we can define for cells in BG and the map we use for computing homology is
the sum of those two maps.

Definition 5.1 [3] Let [g1| · · · |gm] ∈ BG be an n-cell. The simplicial boundary of
[g1| · · · |gm] is the map ∂s : Cn(BG;G)→ Cn−1(BG;G) defined by

∂s[g1| · · · |gm] = [g2| · · · |gm]

+
m−1∑
i=1

(−1)dB [g1|···|gi][g1| · · · |gi ◦ gi+1| · · · |gm]

+ (−1)n[g1| · · · |gm−1],

where by [g1| · · · |gi ◦gi+1| · · · |gm] we mean combining gi and gi+1 via the group operation ◦
for G. The residual boundary of [g1| · · · |gm] is the map ∂r : Cn(BG;G)→ Cn−1(BG;G)
defined by

∂r[g1| · · · |gm] =
m∑
i=1

(−1)dB [g1|···|gi−1]+1[g1| · · · |∂gi| · · · |gm],

where ∂gi is the boundary of gi in G. We define the total boundary of [g1| · · · |gm] to be
the map ∂n : Cn(BG;G)→ Cn−1(BG;G) defined by

∂n = ∂s + ∂r.

Note that since elements in Zp have no boundary, cells in BZp have no residual bound-
ary, and thus the total boundary of a cell in BZp is its simplicial boundary. The simplicial
boundary of an n-cell in BG has a nice geometric interpretation. If an n-cell σ has sim-
plicial dimension k, then the simplicial boundary of σ is the boundary of ∆k, where each
side is associated with a particular element of Gn−1.
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The particle model specifically helps to visualize the boundary maps. For example,
applying the boundary map to an n-cell in BZ2 corresponds to the left-most symbol and
the right-most symbol sliding off of the unit interval. Specifically, we depict ∂2[1|1] =
[1] + [1] = 2[1] ≡ 0 as

∂2( ) = + = 2( ) = 0.

With these definitions, we define the nth homology group of BG by Hn(BG;G) =
ker ∂n/ im ∂n+1, as before.

5.2 The Homology of BZp

The homology groups of K(Zp, n) are well-known from Cartan [2]. The homology groups
of the collection of K(Zp, n) for all n > 1 and a fixed p form what is known as a Hopf ring.
While this is beyond the scope of this paper, the homology groups are nice and worth
studying. The original proofs are very algebraic. A newer description of this structure
can be found in Wilson’s survey on Hopf rings [10]. Here we will use bar notation to
give a different calculation for the homology groups of K(Z2, 1), and then we will use the
particle model to visualize this structure.

Theorem 5.2 [2] For a prime p, Hn(BZp;Zp) ∼= Zp, for each n ≥ 0.

Proof. We provide the proof for p = 2. The proof for odd primes is outside the
scope of this paper. As noted in Section 5.1, the residual boundary map of elements in
BZ2 is trivial, so ∂n = ∂s for each n. By Remark 2.8, Cn(BZ2;Z2) ∼= Z2 for each n. Let
[g1|g2| · · · |gn], where gi = 1 for each i, be the nontrivial n-cell in Cn(BZ2;Z2). Computing
its boundary, we find

∂n[g1|g2| · · · |gn] = ∂s[g1|g2| · · · |gn]

= [g2| · · · |gn] +
n−1∑
i=1

[g1| · · · |gi ◦ gi+1| · · · |gn] + (−1)n[g1|g2| · · · |gn−1].

For each i, gi ◦ gi+1 = 1 ◦ 1 ≡ 0 (mod 2). So [g1| · · · |gi ◦ gi+1| · · · |gn] is an (n− 2)-cell in
BZ2 by Definitions 2.1 and 2.5, and thus is trivial in the boundary map as it is not in the
codomain of ∂n. Since each gi = 1, we have

[g2| · · · |gn] + (−1)n[g1|g2| · · · |gn−1] = [g2| · · · |gn] + (−1)n[g2| · · · |gn]

≡ 0 (mod 2).

Thus ∂n is the zero map, and we have

Hn(BZ2;Z2) =
ker ∂n

im ∂n+1

=
Cn(BZ2;Z2)

{0}
∼= Z2

for each n ≥ 0. �
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The previous theorem implies there is a unique generator of Hn(BZ2;Z2), which we
will denote bn. We may also choose a generator for Hn(BZp;Zp) by taking the element
associated with 1 ∈ Zp, which we will also denote by bn. Given the choice of generators,
we can define an addition on the collection of homology groups for BZp that is induced
by the addition on BZp. One may think of adding two generators as “shuffling” their
group elements together.

Definition 5.3 [3] The addition on the collection of homology groups of BZp

∗ : Hi(BZp;Zp)×Hj(BZp;Zp)→ Hi+j(BZp;Zp)

is defined by

bi ∗ bj = bj ∗ bi ≡
(
i+ j

i

)
bi+j (mod p).

Using multinomial coefficients and noting that the addition is commutative, we can
show that the addition is also associative. Recall the multinomial coefficient

(
n
j,k

)
is defined

as
(
n
j,k

)
= n!

j!k!
. We can then see that

(bi ∗ bj) ∗ bk =

(
i+ j

i

)
bi+j ∗ bk

=

(
i+ j

i

)(
i+ j + k

k

)
bi+j+k

=

(
i+ j + k

k, i

)
bi+j+k

=

(
i+ j + k

i

)(
j + k

k

)
bi+j+k

=

(
j + k

k

)
bj+k ∗ bi

= bi ∗ (bj ∗ bk).

For example, b2 ∗ b1 =
(
3
1

)
b3 ≡ b3, is the result of the addition of the generator in

degree 2 and the generator in degree 1. In the particle model, this would look like:

∗ =

From Definition 5.3, we have that bi ∗ bj = 0 only when
(
i+j
i

)
≡ 0 (mod p). The

following theorem provides a method for determining whether
(
i+j
i

)
≡ 0 (mod p).

Theorem 5.4 (Kummer’s Theorem [5]) For a prime number p, the largest power of
p that divides

(
n
k

)
is the number of carries when adding k and n− k in base-p.

Thus,
(
i+j
i

)
≡ 0 (mod p) if there is at least one carry required to add the base-p repre-

sentations of i and j. We will use this fact to prove the following theorem.
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Theorem 5.5 The generator bn of Hn(BZp;Zp) can be expressed as a sum of the gener-
ators bpi of Hpi(BZp;Zp), and this is determined by the base-p representation of n.

While this theorem is stated in [10] for p = 2, a proof is not provided. We provide a
proof below for general prime p.
Proof. Let n =

∑k
i=0 cip

i, where ci ∈ {0, 1, 2, . . . , p− 1}, be the unique base-p represen-
tation of n. We would like to represent bn as

k∑
i=0

cibpi , (1)

where we use
∑

to mean the addition from Definition 5.3 and cibpi to mean the ci-fold
sum of bpi with itself. By Definition 5.3,

cibpi =

ci∑
j=1

bpi =

(
cip

i

pi, pi, . . . , pi

)
bpi =

ci∏
j=0

(
(ci − j)pi

pi

)
bpi . (2)

For (1) to be a representation of bn, (2) must be nonzero (mod p) for each i such that
ci 6= 0. By Kummer’s Theorem, this will be the case if no carries are required when
adding the base-p representations of pi and (ci − j)pi − pi = (ci − j − 1)pi.

Consider the case when (ci − j − 1) is maximal; that is, when ci = p − 1 and j = 0.
Then we are concerned with the base-p addition of pi and (p−2)pi. Certainly this addition
produces no carries, since 1 + (p − 2) = p − 1 is a valid digit in a base-p representation.

It follows that
(
(ci−j)pi

pi

)
is not divisible by p for each j, 0 ≤ j ≤ ci, when ci = p − 1.

Similarly,
(
(ci−j)pi

pi

)
is not divisible by p for each ci such that 0 < ci < p− 1. Thus, (2) is

nonzero (mod p) for each i such that ci 6= 0. Therefore (1) is a representation for bn. �

6 Conclusion

The bar construction and the particle model both provide useful ways to perform com-
putations on BZp. Specifically, the particle model provides a nice visual way to represent
cells in BZ2, and BZp more generally. It further gives a simple way to denote homology
classes. Counting the number of cells becomes much more clear, as does determining
dimensions and the addition operation. This advantage continues as we iterate to B2Z2

and even B3Zp. Even though visualizing the entire particle model is impossible for four
or more iterations, the idea of placing elements from BnZp along a unit interval is useful
for calculations in Bn+1Zp, and provides clarity for the multiplication operation on the
Hopf ring. This Hopf ring structure will be described in future work.

Appendix A CW Complexes

Although these definitions can generally be found in an introductory topology book such
as Massey [6], we provide them here for any readers who may not be familiar with them.
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Definition A.1 An (open) n-cell, denoted en, is an open space that is homeomorphic
to the open disk B̊n. A CW complex is a Hausdorff space X together with an ascending
sequence of closed subspaces

X0 ⊆ X1 ⊆ X2 ⊆ · · ·

satisfying:

• X0 is a collection of 0-cells with the discrete topology.

• For n > 0, Xn\Xn−1 is a disjoint collection of n-cells enλ with characteristic
maps fλ : Cl(Bn) → Xn such that f maps B̊n homeomorphically onto en and
f(∂B̊n) ⊂ Xn−1. We think of the characteristic maps as instructions for how to
attach the n-cells to Xn−1 to build Xn.

• X =
⋃
iX

i.

• X and each X i has the weak topology.

We call each subset Xn the n-skeleton of X. Elements of X0 are called vertices
or 0-cells. A CW complex is called finite if it contains finitely many cells, and infinite
otherwise. If X = Xn for some integer n, we say that the CW complex is finite dimen-
sional, and the least such n is its dimension. For cells em and en, we say that em is a
face of en if em ⊆ Cl(en).

Example A.2 (n-Sphere) The n-sphere can be given a CW structure such that there
are two cells: a 0-cell and an n-cell. Then the k-skeletons of Sn, for 0 ≤ k < n, contain a
single point, and the n-skeleton is Sn.

We note that a CW structure is not unique and there are other CW structures that
can be put on the n-sphere.

Example A.3 (Cellular homology of the 2-Sphere) Let the two-sphere, S2, have
the CW structure consisting of one vertex, v, and one 2-cell, F . The chain groups are
then C0(S

2) = 〈v〉 ∼= Z, C1(S
2) = {0}, C2(S

2) = 〈F 〉 ∼= Z, and Ck(S
2) = {0} for k > 2.

Since C1(S
2) = {0}, we have ker ∂2 = C2(S

2) ∼= Z. By definition, ker ∂0 = C0(S
2) ∼= Z.

All other images and kernels are {0}. Thus, the homology groups for S2 are

H0(S
2) =

ker ∂0
im ∂1

=
〈v〉
{0}

= 〈v〉 ∼= Z,

H2(S
2) =

ker ∂2
im ∂3

=
〈F 〉
{0}

= 〈F 〉 ∼= Z,

and all other homology groups are {0}. Thus, S2 is path connected with a single 3-
dimensional void and no voids of any other dimension.
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Example A.4 (Cellular homology of the 2-sphere with Z2 coefficients) Here we
repeat Example A.3 with Z2-coefficients. The chain groups are then C0(S

2) = 〈v〉 ∼= Z2,
C2(S

2) = 〈F 〉 ∼= Z2, and Ck(S
2) = {0} for k = 1 and k > 2. The computations in

Example A.3 give ker ∂2 = C2(S
2) ∼= Z2, ker ∂0 = C0(S

2) ∼= Z2, and all other images and
kernels are {0}. Thus, the homology groups for S2 with Z2-coefficients are

H0(S
2;Z2) ∼= Z2,

H2(S
2;Z2) ∼= Z2,

and all other homology groups are {0}.
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