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1 Introduction

Much recent interest has concerned the inverse eigenvalue problem of a graph, namely, to
determine all possible spectra of real symmetric (Hermitian) matrices whose off-diagonal
pattern of zero/non-zero entries is given by the adjacencies of a graph (see [7] and the
references therein). The special case of dual multiplicity graphs, or graphs that permit
two distinct eigenvalues, has been thoroughly investigated (see [2], [3], [9], and [12]).

In [1] this problem was reintroduced from the point of view of frame theory. Frames
in finite-dimensional spaces have received much attention from both pure and applied
mathematicians and constitute a vast literature; see [11] for a thorough introduction or
[14] for a development at the undergraduate level. In finite-dimensional spaces, a finite
frame is a sequence of vectors whose span is the whole space; the redundancy of frames
is their key advantage over orthonormal bases in applications such as image processing
or data transmission. Tight frames [20] are especially important since they provide (non-
unique) reconstruction of vectors similarly to orthonormal bases, without the requirement
of orthogonality (or linear independence). Every simple graph is a frame graph, that is,
has a vector representation by a frame {f1, . . . , fn} with 〈fi, fj〉 6= 0 if and only if the
vertices represented by fi and fj are connected by an edge. In the real case, this is
also known as a faithful orthogonal representation, dating back to [17]. Dual multiplicity
graphs are those which have a representation by a tight frame, and classifying them is a
difficult question.

In this paper, we continue the line of investigation of [1], applying frame theoretic tools
to a graph theoretic question. In the next section, we provide definitions and preliminary
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material from both graph theory and frame theory, concluding with some key connections.
In Section 3, we focus on tight frames and establish an improved result on frame graphs
being embedded as induced subgraphs of tight frame graphs. Although a straightforward
consequence of Proposition 2.1 of [10], Corollary 3.8 yields embeddings that are minimal in
terms of the number of additional vectors required; we contrast our construction with the
non-minimal embedding of Theorem 4.2 of [12]. Section 4 contains our main contribution,
the natural recognition of frame graphs as line graphs and the classification of certain line
graphs as tight frame graphs. Using what we refer to as the “Laplacian method,” we
establish the line graph of the complete graph as a tight frame graph (Theorem 4.3) and
give a new, constructive proof of the tightness of the complete graph (Theorem 4.4). We
illustrate relationships between line graphs and root graphs in terms of whether or not
they are tight frame graphs and end by pointing out some limitations of this approach.

2 Background

A graph Γ = (V,E) is an ordered pair, where V = V (Γ) = {v1, . . . , vn} is a non-empty
set of vertices and E = E(Γ) is a set of unordered pairs of distinct vertices, called edges
(or lines) connecting vertices. Here we consider only undirected simple graphs, without
loops, or edges connecting a vertex to itself, and without multiple edges between a pair of
vertices. We say two vertices vi, vj are adjacent (or are neighbors) if {vi, vj} ∈ E, and two
edges are incident if they share an endpoint. The degree of a vertex v, denoted deg(v), is
the number of vertices adjacent to v. The order of a graph is |V | = n and its size is |E|.

A trail is a sequence of distinct, incident edges connecting a sequence of vertices. If
the vertices in a trail are distinct, the associated graph is a path, and if a trail begins and
ends at the same vertex but all other vertices are distinct, the graph is a cycle. The path
and cycle on n vertices are written Pn and Cn, respectively. An induced subgraph is a
subset of vertices of a graph and all edges whose endpoints are both in that subset. If a
graph has at least one induced path connecting any two vertices, the graph is connected.
If the deletion of an edge from such a graph results in a disconnected graph, that edge is
known as a bridge.

v3

v1 v2

v4

Figure 1: The diamond graph is a connected, bridgeless graph of order 4 and size 5; P3

and C3 as induced subgraphs

The complete graph Kn on n vertices has {vi, vj} ∈ E for all i 6= j. Equivalently, the
degree of every vertex of Kn is n− 1. The star graph Sn on n vertices has one vertex of
degree n−1 and n−1 vertices of degree one. The complete bipartite graph Km,n has vertex
set V = V1 ∪ V2 (|V1| = m, |V2| = n) and edge set E = {{v1, v2} : v1 ∈ V1 and v2 ∈ V2}.
Note that Sn is the same graph as K1,n−1. The Cartesian product of graphs Γ and Λ,
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denoted Γ�Λ, is the graph with vertex set V (Γ) × V (Λ), such that vertices (u, u′) and
(v, v′) are adjacent in Γ�Λ if and only if either u = v and {u′, v′} ∈ E(Λ) or u′ = v′ and
{u, v} ∈ E(Γ).

Both graphs and frames determine associated matrices, the entries of which may be
over the real or complex field. In the case of frames, we consider the finite-dimensional
Hilbert space Hd, equipped with the standard inner product 〈 · , · 〉, where H = C or R.
In what follows, we denote by In, 0n, and Jn the n× n identity matrix, zero matrix, and
all-ones matrix, respectively.

For a graph Γ on n vertices, the n× n Laplacian matrix L of Γ is defined by

Lij =


deg(vi) if i = j
−1 if {vi, vj} ∈ E
0 otherwise.

The Laplacian can also be written as L(Γ) = D(Γ) − A(Γ), where D(Γ) is the diagonal
matrix with the degree of each vertex of Γ along the diagonal and A(Γ) is the adjacency
matrix with zeros along the diagonal and off-diagonal zero/one pattern corresponding to
adjacencies between vertices. More generally, to a graph Γ we associate the following
subset of n× n Hermitian (or real symmetric) matrices:

H(Γ) = {M ∈ Hn×n : M = M∗, mij 6= 0 ⇐⇒ {vi, vj} ∈ E(Γ) for i 6= j}

where ∗ denotes the conjugate transpose. All matrices in H(Γ) must have real diagonal
entries, that are otherwise unrestricted, and real eigenvalues. The Spectral Theorem
highlights the crucial connection between a Hermitian matrix and its eigenvalues and an
orthonormal basis of eigenvectors:

Theorem 2.1 A Hermitian matrix M may be diagonalized as M = UDU∗, where the
eigenvalues of M are the entries of the real diagonal matrix D and U is a unitary matrix
whose columns are a complete set of corresponding unit eigenvectors of M .

The set of positive semidefinite Hermitian matrices associated with a graph Γ is defined
by

H+(Γ) = {M ∈ H(Γ) : 〈Mx, x〉 ≥ 0 for all x ∈ Hn}.

Clearly any M ∈ H+(Γ) has nonnegative eigenvalues. The minimum semidefinite rank of
a graph is

msr(Γ) = min{rank(M) : M ∈ H+(Γ)}.

Although the minimum semidefinite rank is not field-independent [6], the named graphs
that appear in this paper have equal minimum semidefinite rank over C and R.

The Laplacian matrix of a graph of order n is positive semidefinite with smallest
eigenvalue 0; note that the all-ones vector 1 is an eigenvector of L corresponding to
λ = 0. The rank of L is n − k, where k is the number of connected components of the
graph [13]. Suppose Γ is a connected graph on n vertices. Then rank(L(Γ)) = n− 1 and
msr(Γ) ≤ n− 1. Now suppose msr(Γ) = 1. Then there exists M ∈ H+(Γ) with only one
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nonzero eigenvalue λ, and M = uλu∗, where u is its corresponding unit eigenvector. If
any uk = 0, both the kth row and kth column of M contain only zeros, which contradicts
the assumption that Γ is connected. Therefore, any connected graph Γ with msr(Γ) = 1
must be the complete graph Kn, and for Γ 6= Kn, 2 ≤ msr(Γ) ≤ n− 1. In the remainder
of this paper, we assume Γ is connected since a matrix associated with a disconnected
graph can be written as the direct sum of matrices for each component.

Denote by q(Γ) the minimum number of distinct eigenvalues for any M ∈ H(Γ).
Clearly 1 ≤ q(Γ) ≤ n. Now if q(Γ) = 1, then M = UDU∗ = λIn for some M ∈ H(Γ), so Γ
is the edgeless, or totally disconnected, graph on n vertices. Therefore, connected graphs
must have q(Γ) ≥ 2. Of particular interest are dual multiplicity graphs where q(Γ) = 2.
As a consequence of the last paragraph, Kn is a dual multiplicity graph.

We now turn our attention to the frame representation of a graph. A sequence of
vectors F = {fi}ni=1 is a finite frame for a d-dimensional Hilbert space Hd if there exist
constants 0 < A ≤ B <∞ such that

A‖x‖2 ≤
n∑

i=1

|〈x, fi〉|2 ≤ B‖x‖2 for all x ∈ Hd. (1)

The two constants A and B are called frame bounds. The largest lower frame bound and
smallest upper frame bound are called the optimal frame bounds. If A = B, the frame is
tight (or B-tight), and when A = B = 1, the frame is a Parseval frame. Inequality (1)
is equivalent to span{fi}ni=1 = Hd (although this is not valid in infinite dimensions). The
synthesis operator F : Hn → Hd is given by F (ei) = fi, where {ei}ni=1 is the canonical
orthonormal basis for Hn. Its adjoint, the analysis operator F ∗ : Hd → Hn is given by
F ∗(x) = (〈x, fi〉)ni=1. In what follows, we use the matrix representations of these operators,

F =

 | |
f1 · · · fn
| |

 and F ∗ =

 — f ∗1 —
...

— f ∗n —


for the d×n synthesis matrix and n×d analysis matrix, respectively. The frame operator
S = FF ∗ : Hd → Hd is defined by

FF ∗(x) =
n∑

i=1

〈x, fi〉fi =
n∑

i=1

fif
∗
i x,

and the Gram operator (also Gramian or Gram matrix) G = F ∗F : Hn → Hn is given by
gij = 〈fj, fi〉 for 1 ≤ i, j ≤ n. Note that A‖x‖2 ≤ 〈Sx, x〉 ≤ B‖x‖2 for all x ∈ Hd, and F is
a Parseval frame if and only if S = Id. The matrix S = FF ∗ is invertible, positive definite,
and Hermitian. Its eigenvalues are the nonzero eigenvalues of the positive semidefinite,
Hermitian matrix G = F ∗F . The following result is well-known.

Lemma 2.2 The frame F is a Parseval frame if and only if G2 = G. That is, a frame
is Parseval if and only if its Gram matrix is an orthogonal projection.
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Proof. If FF ∗ = Id, then G2 = G. If G2 = G, then left-multiplying both sides by F and
right-multiplying both sides by F ∗ gives S3 = S2. Since S is invertible, it follows that
S = Id. �

As investigated in [1], a frame F = {fi}ni=1 for Hd and a graph Γ = (V,E) with |V | = n
may be associated with each other provided there is a one-to-one correspondence between
vectors fi and vertices vi such that {vi, vj} ∈ E if and only if 〈fi, fj〉 6= 0. This is known
as a vector representation, or for us a frame representation, of the graph. Through an
abuse of notation, we may refer to the vertices vi as the vectors fi.

We end this section by pointing out the meanings of msr(Γ) and q(Γ) in the frame the-
oretic context and providing a specific example to illustrate the frame theoretic concepts
encountered above.

Given a (connected) graph Γ with msr(Γ) = k, there exists some M ∈ H+(Γ) with rank

k, which can be decomposed as M = UDU∗ by Theorem 2.1. Letting D̃ be the truncated
matrix of only the nonzero eigenvalues of M and Ũ the corresponding truncated matrix
of eigenvectors, we recognize M as the Gram matrix of a frame:

M = Ũ
√
D̃
∗√

D̃Ũ∗ = F ∗F,

where F =
√
D̃Ũ∗ is a k × n matrix whose columns form a frame for Hk. Clearly the

minimum semidefinite rank of a graph Γ is the lowest dimension of a Hilbert space in
which a frame associates with Γ.

If a graph is associated with a tight frame, then it is known as a tight frame graph. Let
F = {fi}ni=1 be a frame for Hd associated with a connected graph Γ. The frame operator
S has eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λd, where the optimal lower frame bound of F is
A = λ1 and optimal upper frame bound is B = λd [11]. If F is tight, A = B, the Gramian
G must have only one nonzero eigenvalue, and q(Γ) = 2. In fact, a connected graph is a
tight frame graph if and only if it is a dual-multiplicity graph ([1], Theorem 5.2).

Example 2.3 The diamond graph K4 − e in Figure 1 is a tight frame graph since

F =
1√
10

[
1√
2
−3√
2

2 1
1√
2

3√
2

1 2

]

is the synthesis matrix of a Parseval frame for R2 associated with the diamond graph.
Indeed, it is easy to check that S = FF ∗ = I2 and G = F ∗F ∈ H+(K4−e). As mentioned
in the introduction, a key advantage of frames over orthonormal bases is their redundancy,
which makes frames robust to erasures. For example, any x ∈ R2 can be reconstructed
from the coefficients 〈x, fi〉 as x = Sx =

∑4
i=1〈x, fi〉fi, where the fi are the columns of

F . Suppose that, in the course of data transmission, 〈x, f1〉 and 〈x, f3〉 are lost. Then

F̃ = {f2, f4} is still a spanning set for R2 and hence still a frame. If S̃ is the frame

operator of F̃ , then x can still be recovered as

x = 〈x, f2〉S̃−1(f2) + 〈x, f4〉S̃−1(f4).
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We see in Figure 2 that the original frame is robust to the loss of any two vectors. On
the other hand, the sequence F ′ = {f1, f2, f3, f3} is a frame for R2 that represents the
diamond graph but which is robust to only one erasure, since reconstruction would be
impossible in the event that both 〈x, f1〉 and 〈x, f2〉 were lost.

f1

f2

f3

f4

−1 1

1

Figure 2: The column vectors of the synthesis matrix in Example 2.3

3 Tight Frames

In this section, we use a frame theoretic approach to give alternate proofs of some known
results about tight frame graphs and to improve a result on embedding frame graphs in
tight frame graphs.

Lemma 3.1 A graph Γ is a tight frame graph if and only if it is a Parseval frame graph.

Proof. Suppose Γ is a tight frame graph on n vertices represented in Hd. Then there
exists a tight frame F = {fi}ni=1 ⊆ Hd with frame operator S = FF ∗ = BId and
Gramian G = F ∗F ∈ H+(Γ). Since 1√

B
F 1√

B
F ∗ = Id and 1

B
G has the same off-diagonal

zero/nonzero pattern as G, 1√
B
F is a Parseval frame representing Γ. Conversely, if Γ is a

Parseval frame graph, then there exists a tight frame with frame bound B = 1 representing
Γ. �

The following simple but highly useful visual characterization of graphs that are not
tight frame graphs was given as Corollary 3.4 of [12], Corollary 4.5 of [3], and Theorem
5.3 of [1]:

Proposition 3.2 If Γ is a tight frame graph, any two non-adjacent vertices of Γ do not
have exactly one common neighbor.

Proof. By Lemma 3.1, we may assume that Γ is a Parseval frame graph, with corre-
sponding Parseval frame F and Gram matrix G. Assume non-adjacent vertices fi and
fj have a unique common neighbor fk. Then 〈fj, fi〉 = 0, 〈fk, fi〉 6= 0, 〈fj, fk〉 6= 0, and
〈fl, fi〉〈fj, fl〉 = 0 for all l 6= k. By Lemma 2.2,

0 = 〈fj, fi〉 =
n∑

l=1

〈fl, fi〉〈fj, fl〉 = 〈fk, fi〉〈fj, fk〉,
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a contradiction. �

As a consequence of the previous result, a connected tight frame graph with three or
more vertices must be bridgeless. In fact, we can say more.

Corollary 3.3 If Γ is a connected tight frame graph with at least three vertices, then
every edge of Γ belongs to a 3-cycle or a 4-cycle.

Proof. Suppose {u, v} ∈ E(Γ). Since Γ is connected with |V (Γ)| ≥ 3, we may assume
there exists w ∈ V (Γ) such that {v, w} ∈ E(Γ). If u is adjacent to w, then {u, v} belongs
to a 3-cycle. Otherwise, if u is not adjacent to w, then {u, v} belongs to a 4-cycle by
Proposition 3.2. �

The redundancy (overcompleteness) of frames is the feature that makes them desir-
able in many applications when compared to orthonormal bases. The following shows
that redundancy is necessary for tight frames associated with connected (or merely not
edgeless) graphs.

Proposition 3.4 Suppose F = {fi}ni=1 is a tight frame for Hd associated with a connected
graph Γ. If d ≥ 2, then d < n.

Proof. By Lemma 3.1, assume F is the synthesis matrix of a Parseval frame for Hd

with Gramian G = F ∗F ∈ H+(Γ). Since S = FF ∗ = Id, the rows of F are orthonormal.
If d = n, then F is a unitary matrix, and G = S = Id, which implies Γ is edgeless,
contradicting the assumption that Γ is connected. �

Corollary 3.5 Suppose F = {fi}ni=1 is a tight frame for Hd associated with a connected
graph Γ. If d ≥ 2, then zero is an eigenvalue of its Gramian G.

Proof. If S is the frame operator of F , then rank(G) = rank(S) = d < n, by Proposition
3.4. �

Naimark’s Theorem is a central result in the theory of Parseval frames [11]. A Naimark
complement of a Parseval frame F = {fi}ni=1 for Hd for d < n can be viewed as a
completion of the d× n synthesis matrix to an n× n unitary matrix [10]. As an explicit
construction, begin with a Parseval frame F = {fi}ni=1 for Hd with Gramian G = F ∗F .
By Theorem 2.1, we can write G = UDU∗ where U is unitary and D = Id ⊕ 0n−d. Since

In −G = In − UDU∗ = U(In −D)U∗,

we see that In−G is the Gram matrix of the Parseval frame F̃ for Hn−d whose synthesis
matrix is the last n− d rows of U∗. And In −G has the same off-diagonal zero/nonzero

pattern as G, so F and its complement F̃ have the same associated graph (see also
Theorem 2.1 of [12]). By Lemma 3.1, we may refer to the frame complement in the case
of a tight frame graph Γ and note that msr(Γ) ≤ bn

2
c.
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Proposition 3.6 Kn is the only connected graph on n vertices represented by a tight
frame for Hn−1.

Proof. If F is a tight frame for Hn−1 with Gramian G ∈ H+(Γ), then the frame
complement is a tight frame for H, but the only connected graph with msr(Γ) = 1 is
Γ = Kn. �

Although it is proved in [12] that any graph may occur as an induced subgraph of a
tight frame graph, with the same minimum semidefinite rank, the following frame theoretic
approach often gives a smaller such embedding.

Theorem 3.7 ([10], Proposition 2.1) Let F = {fj}nj=1 be a frame for Hd with synthe-
sis matrix F . Suppose S = FF ∗ has orthonormal eigenvectors {xi}di=1 corresponding to
eigenvalues A = λ1 ≤ λ2 ≤ . . . ≤ λk < λk+1 = . . . = λd = B. Then {fj}nj=1 ∪ {hi}ki=1 is a
B-tight frame for Hd where

hi = (B − λi)
1
2xi

for 1 ≤ i ≤ k.

Corollary 3.8 Any connected frame graph is an induced subgraph of a connected tight
frame graph, represented by vectors in the same Hilbert space. For a specific frame, the
number of additional vectors required for the embedding is minimal.

Proof. Let Γ be a connected graph represented by the frame F = {fj}nj=1 ⊆ Hd, and let
{hi}ki=1 be defined as in Theorem 3.7. Since F is a spanning set for Hd and each hi 6= 0,
it is impossible for 〈hi, fj〉 = 0 for all 1 ≤ j ≤ n, which ensures that the corresponding
tight frame graph, represented by {fj}nj=1 ∪ {hi}ki=1, is connected. As noted in [10], this
construction adds a minimal number of vectors needed to complete F to a tight frame.
Indeed, suppose the eigenvalues of S = FF ∗ are A = λ1 ≤ λ2 ≤ . . . ≤ λk < λk+1 = . . . =
λd = B and there exist vectors h′i ∈ Hd for 1 ≤ i ≤ k′ < k such that writing H ′ for the
matrix with columns {h′i}k

′
i=1 yields [F H ′][F H ′]∗ = FF ∗+H ′H ′∗ = CId for some constant

C > 0. SinceB = λd is the optimal upper frame bound of F , Inequality (1) impliesB ≤ C.
By a theorem of Weyl ([16], Corollary 4.3.5), C = λ1(FF

∗ + H ′H ′∗) ≤ λ1+k′(FF
∗) < B,

a contradiction. �

Remark 3.9 For a given graph, we can contrast the the worst-case number of additional
vectors required by the construction in Corollary 3.8 with that of Theorem 4.2 of [12].
By Corollary 3.8, the largest possible value for the additional number of vectors is d− 1,
in the case when all eigenvalues of S are distinct. On the other hand, the construction
in the proof of Theorem 4.2 of [12] is a two-step process: first, columns are adjoined to
F to yield a matrix with orthogonal rows; then more columns are adjoined to result in
equal-norm rows, which may then be normalized. The entire process could result in up
to (d−1)(d+2)

2
additional vectors.

We illustrate the difference between the two constructions compared in Remark 3.9.
If we take the frame in Example 2.3 and delete a single vector to create the frame F ′, the
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rows of the corresponding synthesis matrix F ′ are no longer orthogonal, so the frame is no
longer tight. Then F ′ is a frame for H2 representing a truncated version of Figure 1 (either
P3 or C3), and its frame operator S has two distinct eigenvalues A < B. (Although C3 is
a tight frame graph, both constructions may proceed for a non-tight frame representation
of it.) By Theorem 3.7, only one additional vector is needed to complete F ′ to a B-tight
frame. That is to say the truncated graph occurs as an induced subgraph of some tight
frame graph on four vertices. On the other hand, applying the construction method from
Theorem 4.2 of [12] to F ′, one vector is added to make the rows of F ′ orthogonal and one
additional vector must then be added to normalize the rows. The embedding is therefore
not minimal for this frame. Note that the frame given in Example 6.10 of [12] corresponds
to the same graph, and if either of the first two columns is deleted, then the construction
method in Theorem 4.2 of [12] will only add a single vector; however, if either of the
second two columns is deleted, then two additional vectors will be added.

For larger tight frame graphs, if a single frame vector is deleted (resulting in a non-
tight frame), the embedding in Theorem 4.2 of [12] may add significantly more vectors
to the frame than necessary to embed in a tight frame graph. Consider the tight frame
graph Γ = K3�K2 with tight frame given in Figure 2.1 of [12]. The deletion of any
single vertex necessarily results in a non-tight frame graph. Applying Theorem 4.2 of [12]
adds between 3 and 5 vectors to the truncated frame while Theorem 3.7 appends only one
vector. Figure 3 below shows the tight frame graph created by deleting the first vector
of the tight frame in Figure 2.1 of [12] and then applying the construction techniques in
Theorem 4.2 of [12] and Theorem 3.7, respectively. The highlighted vertices and edges
constitute the truncated frame graph represented by the frame with synthesis matrix

F ′ =
1√
5

 1 1 −1 1 1
0 1 1 −1 1
1 0 1 1 −1


and frame bounds A = 3/5 and B = 1; the two algorithms construct Parseval frames with
synthesis matrices

F1 =
1

3

 1 1 −1 1 1 0 2 0

0 1 1 −1 1
√

5 0 0

1 0 1 1 −1 1√
5

0 2
√
30
5

 and F2 =
1√
5

 1 1 −1 1 1 0
0 1 1 −1 1 1
1 0 1 1 −1 1

 ,
respectively.

Remark 3.10 If F ′ does not have a scaling factor of 1√
5
, the construction technique from

Theorem 4.2 of [12] appends only a single vector to make the rows orthogonal and equal
norm. But even without scaling, deleting any of the last three vectors from the original
frame in Figure 2.1 of [12] results in three vectors being appended to achieve orthogonality,
using the technique of [12].
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Figure 3: The graphs represented by tight frames with synthesis matrices F1 (obtained
via Theorem 4.2 of [12]) and F2 (obtained via Theorem 3.7), respectively

4 Line Graphs

It is natural to try to construct frames for graphs using the Laplacian matrix since the
resultant frame has a graph theoretic interpretation. This approach, however, requires us
to consider the Laplacian of a graph and the vector representation of its line graph.

Given a graph Γ, the (unoriented) incidence matrix Bu(Γ) is the |V |×|E| matrix with
buij = 1 if vertex vi is an endpoint of the j-th edge and 0 otherwise. We may assign an
orientation to Γ by associating each edge {vi, vk} arbitrarily with one of the ordered pairs
(vk, vi) (in which case, we say the edge is negatively incident to vk and positively incident
to vi) or (vi, vk); the oriented incidence matrix B(Γ) has bij = 1 = −bkj if the j-th edge
{vi, vk} is associated to (vk, vi).

For a connected graph Γ with n vertices, the Laplacian matrix L = L(Γ) is a real,
positive semidefinite matrix of rank n − 1. The eigenvalue λ0 = 0 corresponds to the
one-dimensional eigenspace spanned by the all-ones eigenvector x0 = 1. Now, L(Γ) can
be decomposed as L(Γ) = B(Γ)B(Γ)∗, where B = B(Γ) is an oriented incidence matrix of
Γ. Since the frame operator must be full rank, the authors of [5] create an (n−1)×(n−1)
matrix L0 by restrictingB to the (n−1)-dimensional subspace spanned by the orthonormal
eigenvectors x1, . . . , xn−1 of L excluding x0. They let X = [x1 x2 · · · xn−1] and consider
F = X∗B and L0 = FF ∗. Then L0 is the (full rank) frame operator of the frame for
Hn−1 with synthesis matrix F , whose spectrum consists of the nonzero eigenvalues of L
([5], Lemma 5). We will refer to a frame constructed in this manner as being constructed
by the Laplacian method.

The only connected graph which yields a tight frame constructed by the Laplacian
method is Kn, by Proposition 3.6. However, this frame will not represent Kn in the sense
used in this paper; that is, the Gram matrix of the frame will not belong to H+(Kn).
To establish the relationship between the frame and the graph, we instead are motivated
by the well-known connection between the unoriented incidence matrix of a graph and
the adjacency matrix of its line graph. Given a graph P (pronounced “Rho”), called the
root graph, its line graph Γ = L (P) is the graph created by assigning a vertex in V (Γ)
to each edge in E(P), so |V (Γ)| = |E(P)|, and calling two vertices in Γ adjacent if and
only if their corresponding edges are incident in P. Every connected line graph, with the
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exception of K3, determines a unique connected root graph (up to isomorphism) [21].

Proposition 4.1 Let P be a graph with oriented incidence matrix B = B(P), and let
Γ = L (P). Then BB∗ = L(P) and B∗B ∈ H+(Γ).

Proof. As noted above, for any graph with oriented incidence matrix B, the Laplacian
L = BB∗. Since any off-diagonal entry of B∗B is 1 or −1 if two edges share an endpoint
and 0 otherwise, B∗B ∈ H+(Γ), by the definition of the line graph. (Note that for the
unoriented incidence matrix Bu(P), Bu∗Bu − 2I is the adjacency matrix of Γ.) �

The previous result allows us to view a given line graph Γ of order m in terms of
its root graph P of order n ≤ m + 1 (and for a root graph with many edges, n can be
significantly less than m) and build a frame corresponding to Γ with rank n− 1.

Lemma 4.2 Let Γ be a connected line graph with m vertices, and let B = B(P) be an
n ×m oriented incidence matrix of its root graph P. Suppose F = X∗B is a frame for
Hn−1 constructed by the Laplacian method applied to the graph P. Then F ∗F ∈ H+(Γ).

Proof. It is easy to see that the orthogonal projection XX∗ of Hn onto the eigenspace
spanned by {x1, x2, . . . , xn−1} satisfies XX∗f = f − 1

n
〈f, x0〉x0 for any f ∈ Hn where

x0 = 1. For any columns bi, bj of B,

〈X∗bi, X∗bj〉 = 〈bi, XX∗bj〉 = 〈bi, bj − 1
n
〈bj, x0〉x0〉 = 〈bi, bj〉.

By Proposition 4.1, B∗B ∈ H+(Γ), so F ∗F ∈ H+(Γ). �

The Laplacian method allows us to demonstrate the tightness of a new family of
graphs, the line graphs of complete graphs. We know that msr(L (Kn)) = n− 2 by [19].
The Laplacian method generates a tight frame for Hn−1, and a modification of this frame
allows us to obtain a tight frame for Hn−2, corresponding to L (Kn).

Theorem 4.3 For n ≥ 3, if P = Kn, then Γ = L (P) is a tight frame graph for Hn−1

and Hn−2.

Proof. Let P = Kn and Γ = L (P). Apply the Laplacian method to construct the
frame F = X∗B for Hn−1, where B = B(P) is an oriented incidence matrix of P. By
Lemma 4.2, F ∗F ∈ H+(Γ). Since λ1 = λ2 = · · · = λn−1 = n are the nonzero eigenvalues
of L = BB∗ (see, for example, [13]),

L0 = FF ∗ = X∗BB∗X = X∗LX = nIn−1.

Thus F is a tight frame associated to Γ in dimension n− 1.
To show that Γ = L (Kn) is in fact a tight frame graph in dimension n − 2, we use

the construction from [4] in the proof that the minimum rank of Γ is n−2 (also employed
in [19] to show msr(Γ) = n − 2). Let D denote an oriented incidence matrix of Kn−1,
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and let C = In−1 − 1
n−1Jn−1. Consider the (n − 1) × n(n−1)

2
matrix M = [C D]. Easy

computations show that C∗C = C2 = C and C∗D = D. The matrix

M∗M =

[
C∗C C∗D
D∗C D∗D

]
=

[
C D
D∗ D∗D

]
has nonzero entries in the top left corner of the partition, corresponding to all edges
between each vertex of Kn−1 and the nth vertex of Kn, which are all incident with one
another; has nonzero entries in the top right (and bottom left) corner of the partition,
corresponding to all edges of Kn−1 incident with the edges connecting the vertices of
Kn−1 to the nth vertex of Kn; and has nonzero entries in the bottom right corner of
the partition, corresponding to all edge-incidences of Kn−1 (by Proposition 4.1). That is,
M∗M ∈ H+(Γ).

The eigenvector x0 = 1 of L(Kn−1) is also an eigenvector of C, corresponding to the
same eigenvalue λ0 = 0. For 1 ≤ j ≤ n− 2, set xj(j) = −1, xj(n− 1) = 1, and xj(i) = 0
for i 6= j, n − 1; the eigenvectors x1, x2, . . . , xn−2 of L(Kn−1) are also eigenvectors of C,
corresponding to λj = n− 1 and λj = 1 for all j, respectively. Since

MM∗ = CC∗ +DD∗ = C + L(Kn−1),

λ = 0 is an eigenvalue of multiplicity 1 of MM∗ and λ = n is an eigenvalue of multiplicity
n − 2. Let {x̃0, x̃1, x̃2, . . . x̃n−2} be a corresponding orthonormal set of eigenvectors of
MM∗. The Laplacian method now can proceed exactly as it would for a Laplacian
matrix: let X̃ = [x̃1 x̃2 · · · x̃n−2] and F̃ = X̃∗M . This time,

F̃ F̃ ∗ = X̃∗MM∗X̃ = nIn−2,

and F̃ is a tight frame for Hn−2. As in the proof of Lemma 4.2, X̃X̃∗f = f − 〈f, x̃0〉x̃0
for any f ∈ Hn−1. If mj is a column of M , then it is a column of C or a column of D. In
either case, it is easy to see that 〈mj, x̃0〉 = 0. Therefore, for any columns mi,mj of M ,

〈X̃∗mi, X̃
∗mj〉 = 〈mi, X̃X̃

∗mj〉 = 〈mi,mj − 〈mj, x̃0〉x̃0〉 = 〈mi,mj〉,

and M∗M ∈ H+(Γ) implies F̃ ∗F̃ ∈ H+(Γ). �

By Lemma 5.1 of [2], if a graph on n vertices is a tight frame graph for H2, then it
is a tight frame graph for Hd for all 2 ≤ d ≤ bn

2
c. It remains an open question (see

[2]) whether the implication holds for graphs Γ with msr(Γ) > 2. In particular, since
|L (Kn)| = 1

2
n(n−1), it remains to be determined whether L (Kn) is a tight frame graph

for Hd whenever n ≤ d ≤ b1
4
n(n−1)c. Although it is well known that the complete graph

on n vertices is a tight frame graph in all possible dimensions, we provide an algorithmic
proof here that utilizes a slight variant of the Laplacian method.

Theorem 4.4 For n ≥ 2, if P = Sn+1, then Γ = L (P) = Kn is a tight frame graph for
Hd for 1 ≤ d ≤ n− 1.
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Proof. Let P = Sn+1, Γ = L (P) = Kn, and B be an (n+1)×n oriented incidence matrix
of P; then L = BB∗ is the Laplacian matrix of P, and B∗B ∈ H+(Γ), by Proposition 4.1.
To illustrate,

B =



−1 −1 . . . . . . −1
1 0 0 . . . 0
0 1 0 0 0

0 0
. . . 0 0

... 0 0
. . . 0

0 0 0 0 1


and L =



n −1 −1 . . . . . . −1
−1 1 0 0 0 0
−1 0 1 0 0 0
... 0 0

. . . 0 0
... 0 0 0

. . . 0
−1 0 0 0 0 1


.

Recall that L has eigenvalue λ0 = 0 corresponding to the eigenvector x0 = 1. It is easy to
see that λn = n+1 is an eigenvalue with eigenvector xn = (n,−1, . . . ,−1)∗. The remaining
eigenvalues are λ1 = λ2 = . . . = λn−1 = 1 since the columns of the (n+1)× (n−1) matrix

X̃ =



0 0 . . . . . . . . . 0√
n−1
n

0 0 . . . . . . 0

−
√

n−1
n

n−1

√
n−2
n−1

. . . . . . . . . 0

−
√

n−1
n

n−1
−
√

n−2
n−1

n−2

√
n−3
n−2

. . . 0 0

...
−
√

n−2
n−1

n−2
−
√

n−3
n−2

n−3
. . . 0 0

...
...

−
√

n−3
n−2

n−3
. . .

√
2
3

0

...
...

...
. . .

−
√

2
3

2

√
1
2

−
√

n−1
n

n−1
−
√

n−2
n−1

n−2
−
√

n−3
n−2

n−3 . . .
−
√

2
3

2
−
√

1
2


form an orthonormal eigenbasis corresponding to eigenvalue λ = 1.

Let X̃d be the matrix consisting of d columns of X̃, with any n− 1− d columns of X̃
deleted except for the first. Then Fd = X̃∗dB is the synthesis matrix of a Parseval frame
for Hd since its frame operator is the identity:

FdF
∗
d = X̃∗dBB

∗X̃d = X̃∗dLX̃d = Id.

To show that the Gramian F ∗dFd ∈ H+(Γ), we claim that 〈ri, rj〉 6= 0 for any distinct

rows ri, rj of X̃d with 2 ≤ i, j ≤ n+ 1; we may assume i < j. Let J ⊂ {1, 2, . . . , n− 1} be

the subset of indices for the columns of X̃d and let J ′ = J ∩ {1, . . . , i− 1}. If i− 1 /∈ J ′,
then i ≥ 3 and

〈ri, rj〉 =
∑
k∈J ′

1

(n− k)(n− k + 1)
> 0.

If i−1 ∈ J ′, then, allowing the first sum in the expressions below to be empty when i = 2,

〈ri, rj〉 =
∑
k∈J ′
k 6=i−1

1

(n− k)(n− k + 1)
− 1

n− i+ 2
≤

i−2∑
k=1

1

(n− k)(n− k + 1)
− 1

n− i+ 2
< 0,
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where the last inequality follows from a straightforward inductive argument for i ≥ 3. So
for any columns fi, fj of Fd with 1 ≤ i, j ≤ n and i 6= j,

〈fi, fj〉 = 〈X̃∗dbi, X̃∗dbj〉 = 〈−r1 + ri+1,−r1 + rj+1〉 = 〈ri+1, rj+1〉 6= 0.

�

Remark 4.5 If the last n−d−1 columns of X̃ were deleted in the proof of Theorem 4.4,
then the resulting frame would have its last vector repeated n− d times, so it is better to
delete alternating columns and have fewer identical vectors in the frame.

Although both line graphs in Theorems 4.3 and 4.4 are tight frame graphs, only one
of the root graphs (Kn) is. The question of whether or not a line graph is a tight frame
graph is independent of whether or not its root graph is a tight frame graph. We illustrate
this with the next example.

Example 4.6 The table below is illustrative, not comprehensive. The reference column
refers to the numbering in this paper or a citation. Let Γ = L (P).

Γ tight Γ not tight

P tight

P Γ Ref. P Γ Ref.

Kn L (Kn) 4.4, 4.3 K2�K3 L (K2�K3) 4.14, 4.7

C3, C4 C3, C4 [3]

P not tight

Sn+1 (n ≥ 3) Kn 3.2, 4.4 Cn (n ≥ 5) Cn 3.2

On (n ≥ 4) L (On) 3.2, 4.12 Pn (n ≥ 4) Pn−1 3.2

K2,n (n ≥ 3) K2�Kn 4.14

The necessary condition from Proposition 3.2 for a frame graph to be tight can be
converted to a necessary condition on the root graph of a tight frame line graph. We state
this precisely in the next result, used to construct a tight frame root graph with a line
graph that is not a tight frame graph in Example 4.6.

Lemma 4.7 If Γ = L (P) and P contains an induced path on 4 vertices, then Γ is not a
tight frame graph.

Proof. If P4 is an induced subgraph of P, then Γ has P3 as an induced subgraph, such
that this P3 is a subgraph of no C4 in Γ. So there are two non-adjacent vertices in V (Γ)
that have a unique common neighbor and, by Proposition 3.2, Γ cannot be a tight frame
graph. �

Conversely, certain easily observed features of the line graph serve as necessary con-
ditions for the root graph to be associated with a tight frame. In a connected graph, let
pendant vertex denote a vertex of degree 1, and let pendant triangle denote a K3 subgraph
such that exactly two of the three vertices have degree 2.
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Observation 4.8 If Γ = L (P) has a pendant vertex, then P is not a tight frame graph.

Proof. If there is a degree-one vertex in Γ, then there is an edge {u, v} ∈ E(P) that is
incident with exactly one other edge {v, w} in P. Then v is the unique neighbor of the
non-adjacent vertices u and w, and P is not a tight frame graph, by Proposition 3.2. �

Observation 4.9 If Γ = L (P) has a pendant triangle, then P is not a tight frame graph.

Proof. The root graph of K3 may be either K3 or K1,3. However, if Γ has a pendant
triangle, then P must contain a claw (K1,3) as an induced subgraph. The two degree-two
vertices of the pendant triangle in Γ must correspond to the two edges of the claw that
are not incident to any other edges in P. It follows that each of these two edges has an
endpoint that is a degree-one vertex; that is, P contains two non-adjacent vertices with
a unique neighbor (the central vertex of the claw). By Proposition 3.2, P is not a tight
frame graph. �

When the root graph has the same number of vertices as, or one more than, its corre-
sponding line graph, that is a tight frame graph, we can give a complete characterization
of the root graph. We first cite two preliminary results.

Lemma 4.10 ([12], Theorem 6.3) Let Γ be a tight frame graph on n vertices. The
graph created by duplicating one vertex in Γ (that is, introducing a new vertex adjacent to
one vertex u in Γ and to all the neighbors of u) is a tight frame graph.

Lemma 4.11 ([3], Proposition 4.7) The graph on n ≥ 4 vertices created by deleting a
single edge of Kn is a tight frame graph.

We only utilize the previous result in the case n = 4. The proof of Proposition 4.7 of
[3] for that case contains an error, resulting in the construction of C4 instead of K4 minus
an edge. However, the result remains true, by Example 2.3. Lemmas 4.10 and 4.11 imply
the following:

Corollary 4.12 Each graph in the sequence in Figure 4, obtained by iteratively applying
Lemma 4.10 to the tight frame graph of Example 2.3, is a tight frame graph.

· · ·

Figure 4: Duplicating a vertex

Let On be the graph on n ≥ 3 vertices constructed by taking the star graph Sn and
connecting two of its degree-one vertices with an edge (note O3 = C3 = K3). Then L (On)
is a tight frame graph by Corollary 4.12.
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Figure 5: O6 and L (O6)

Proposition 4.13 Suppose Γ = L (P) is a tight frame graph on n ≥ 3 vertices with
connected root graph P.

(a) If |V (P)| = n, then P ∈ {C3, C4, On}.

(b) If |V (P)| = n+ 1, then P = Sn+1.

Proof. (a) Suppose P /∈ {C3, C4, On} has |E(P)| = n ≥ 3 and |V (P)| = n. Then P has
a single, induced cycle on k ≥ 3 vertices. We show that P must contain an induced path
on four vertices, from which the result follows by Lemma 4.7.

Case 1: If k = 3, since P /∈ {On, C3}, n ≥ 5, and there must be two non-adjacent
vertices adjacent to vertices on the induced cycle, such that these connecting edges are
not incident with one another, or two vertices adjacent to each other, such that only one
is adjacent to a vertex on the induced cycle. In either situation, P contains an induced
path on four vertices.

Case 2: If k = 4, since P 6= C4, n ≥ 5, and there must exist some vertex not on the
induced cycle adjacent to a vertex on the cycle, from which a path of length four can be
induced in P.

Case 3: If k ≥ 5, there exists an induced path of length four in P by taking the
subgraph induced by any four vertices on the cycle.

(b) Now assume |V (P)| = n + 1 ≥ 4. Then P must be a tree. If P = Pn+1, then P
clearly contains an induced path of length 4, so assume there exists at least one vertex u
with degree 3 or more. Suppose P 6= Sn+1. Then |V (P)| ≥ 5, and there exists a vertex
w that is not adjacent to u but that has a common neighbor v with u. Now choose any
other vertex adjacent to u, say t, and induce the (unique) path of length four from t to
w. Lemma 4.7 again concludes the argument. �

The minimum number of distinct eigenvalues is well-studied for complete multipartite
graphs [2]. We tie one such result to the line graph of certain complete bipartite graphs.

Proposition 4.14 If P = K2,n for n ≥ 3, then P is not a tight frame graph and Γ =
L (P) = K2�Kn is a tight frame graph.

Proof. Corollary 6.5 of [3] is the first statement. Corollary 6.8 of [3] implies the second
statement. As a direct demonstration, we note that

F = [Jn − In Jn − (n− 1)In]

is a tight frame associated with Γ. �
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In general, Km,n is a tight frame graph if and only if m = n ([3], Corollary 6.5). For
L (Km,n) = Km �Kn, it is known ([9], Proposition 3.1) that q(L (Km,n)) ≤ 3. To the
best of the authors’ knowledge, however, it remains open whether or not the Cartesian
product of two complete graphs is a tight frame graph. Note that every two non-adjacent
vertices in L (Km,n) have exactly two common neighbors [15], so L (Km,n) satisfies the
necessary condition in Proposition 3.2 for being a tight frame graph.

We conclude by noting the limitations of the line graph approach. Line graphs are
characterized as those graphs that do not contain any of nine forbidden graphs as induced
subgraphs [8]. For reference, we list these graphs in Figure 6, using Beineke’s numbering,
G1 through G9.

G1: G2: G3: G4: G5:

G6: G7: G8: G9:

Figure 6: The nine forbidden subgraphs of [8]

Families known to be tight frame graphs are often not line graphs. For example, recall
that if Γ is obtained from a complete graph (n > 3) by deleting a single edge, then Γ is a
tight frame graph. For n = 4, Kn− e is a line graph; however, for n > 4, Kn− e contains
G3 as an induced subgraph and is therefore not a line graph. The hypercube Qn, defined
recursively as Q1 = K2 and Qn = Qn−1�K2, is another example: Qn is a tight frame
graph for each n ≥ 1 ([3], Corollary 6.9), but for n ≥ 3, Qn contains the claw G1 as an
induced subgraph and is therefore not a line graph.

The join of two graphs Γ and Λ, denoted Γ∨Λ, is the graph with vertex set V (Γ)∪V (Λ)
and edge set E(Γ) ∪ E(Λ) ∪ {{u, v} : u ∈ V (Γ), v ∈ V (Λ)}. For two connected graphs Γ
and Λ on n vertices, Γ ∨ Λ is a tight frame graph ([18], Theorem 5.2). Most members of
this large set of examples are not line graphs.

Proposition 4.15 If Γ and Λ are two connected graphs on n ≥ 3 vertices, not both the
complete graph, then Γ ∨ Λ is not a line graph.

Proof. Suppose Γ 6= Kn and consider three vertices u, v, w ∈ Γ and three vertices
a, b, c ∈ Λ.

Case 1: Assume the subgraph induced by {u, v, w} is three isolated vertices. Then
{u, v, w, a} induces the claw graph G1 as a subgraph in Γ ∨ Λ.

Case 2: Assume the subgraph induced by {u, v, w} is the disjoint union of P2 and
an isolated vertex, where w is the isolated vertex. Due to the commutativity of the join
operation, we need to consider only the cases when the subgraph induced by {a, b, c} is
the disjoint union of P2 and an isolated vertex (c being the isolated vertex), P3, or C3. In
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the first case, {u, v, w, b, c} induces G2, in the second case, {u, v, a, b, c} induces G3, and
in the third case, {v, w, a, b, c} induces G3 in Γ ∨ Λ.

Case 3: Assume the subgraph induced by {u, v, w} is P3. Again, the commutativity
of join allows us to consider only the cases when the subgraph induced by {a, b, c} is P3

(with b as the degree-two vertex) or C3. In both cases, Γ ∨ Λ contains G3 as an induced
subgraph, induced by {u, v, w, a, b}.

If every three vertices of Γ induce a copy of C3, then Γ must be the complete graph on
n vertices, which contradicts our assumption. Cases 1 through 3 are therefore exhaustive
and always contain one of the nine forbidden induced subgraphs; hence, Γ ∨ Λ cannot be
a line graph. �

Finally, we note that of the nine graphs listed in Figure 6, G2, G3, and G6 are tight
frame graphs (apply Lemma 4.10 once to the tight frame graph C4 and to the diamond
graph of Example 2.3 to obtain G2 and G3, respectively, and apply twice to the diamond
graph to obtain G6). Graphs G1, G4, G5, G7, and G8 fail to be tight frame graphs by
Proposition 3.2. The wheel graph G9 is not a tight frame graph over symmetric real
matrices ([12], Example 6.13), and, to the best of the authors’ knowledge, whether it is
a tight frame graph over complex matrices remains an open question. The occurrence
of these nine forbidden graphs as induced subgraphs of tight frame graphs is, of course,
guaranteed by Corollary 3.8.
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