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Abstract - This paper studies the volumes of hyperbolic planar trivalent graphs. The
connection between fully augmented links and trivalent planar graphs allows us to apply
previous work on knots and links to this setting. Exact volume bounds for graphs with up to
12 vertices are calculated. Purcell’s sharp lower bound for the volumes of fully augmented
links translates directly to a lower bound for trivalent graphs. Moreover, a natural cell
decomposition on trivalent graphs allows us to interpret upper bounds for link volumes
in the graph theoretic setting. This is done for both the Agol-Thurston tetrahedral upper
bound and Adams’ bipyramidal upper bound. An infinite family of graphs, inspired by Agol-
Thurston’s infinite chain link fence, proves these bounds are asymptotically equivalent.
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1 Introduction

The importance of hyperbolic geometry in topology stems from Mostow’s rigidity theo-
rem, which states that in dimension at least 3, homeomorphic hyperbolic three-manifolds
are isometric. Thus geometric invariants become topological ones. In particular, the
importance of hyperbolic volume in topology is that each hyperbolic knot and link is
associated with a unique volume which can be used as an invariant to identify properties
of that knot or link.

There are many different upper bounds on volume in hyperbolic geometry for different
types of hyperbolic links. A three-manifold is hyperbolic if it admits a hyperbolic metric.
A link is hyperbolic if its complement is a hyperbolic manifold (see [4] for more details).

If L is an (alternating) link in S3, Agol and Thurston use hyperbolic tetrahedra to
prove (in the appendix of [7]) that

vol(S3 \ L) ≤ 10v3 (t(D) - 1),

where t(D) is the number of twist regions (refer to Section 2 for a definition of twist
regions) and v3 is the volume of a regular ideal tetrahedron.

A second upper bound is given by Adams [1], who who uses bipyramids to bound the
volume of hyperbolic alternating links via
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vol(S3 \ L)≤
∑

bi vol(Bi) - a.

The terms in Adams’ upper bound refer to components of which are used to determine
the upper bound – bi being faces, Bi are i-sided bipyramids, and a being the maximum
possible volume collapsed. Refer to Section 5.2.2 and [1] for more detail.

His upper bound, to be described later, improves upon that of Agol-Thurston because
bipyramids have less volume than the corresponding tetrahedral decomposition.

One natural generalization of links is embedded graphs in S3. Heard, Hodgson,
Martelli and Petronio initiated a study of trivalent graphs embedded in 3-manifolds, clas-
sifying the simplest ones (see [5]). The overarching focus of this paper is to use Adams’
bipyramid construction to bound volumes of planar trivalent graphs that are hyperbolic.
As with links, a trivalent graph is hyperbolic if its complement admits a hyperbolic metric.

The words trivalent, cubic, and 3-regular are words to describe graphs where each
vertex has degree 3, but trivalent shall be used throughout this paper.

Masai made a connection between planar trivalent graphs in S3 and FALs, and con-
sidered upper bounds for volumes of such graphs (see [8]). Here we extend Masai’s inves-
tigation by combining his results with Agol-Thurston, Adams and Purcell. More precisely
sections 2 and 3 describe fully augmented links and planar trivalent graphs. Their re-
spective cell decompositions are described, leading to a correspondence between the two
contexts. Section 4 calculates exact volumes for planar trivalent graphs of at most 12
vertices.

Section 5 focuses on volume bounds for planar trivalent graphs, in particular we find

1. sharp lower bounds for such graphs,

2. two upper bounds for volumes of these graphs and,

3. a proof that the upper bounds are asymptotically equivalent.

The lower bound is new in the graph theoretic setting, extending results in Masai [8].
Moreover, it is a direct translation of Purcell’s lower bound for FAL volumes (see [9]).
While Masai mentions the Agol-Thurston upper bound, this paper makes the connection
more explicit by exhibiting the cell decomposition in the graph theory setting. Our appli-
cation of Adams’ bipiramid techniques is novel, allowing us to provide explicit examples
of high-volume planar trivalent graphs.

2 FALs and Cell Decomposition

Before discussing FALs or fully augmented links, some definitions are needed.

Definition 2.1 A twist region of a link diagram is a portion of the diagram containing
only two twisted strands.

A local picture of twists is given in Figure 1. The link diagram on the left of Figure 2
has three twists, while that on the right has four.
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Figure 1: Left: 1 full twist. Right: 2 full twists

Definition 2.2 A link diagram is twist reduced when all twists for a collection of knot
strands are grouped in a single region.

Figure 2 depicts two diagrams of the same link. The right diagram is not twist reduced.
The two crossing twists can be flyped to join the single crossing on the left.

Figure 2: Left: twist reduced link. Right: not twist reduced link.

Definition 2.3 A fully augmented link (FAL) is obtained from a twist reduced link by
placing a trivial component around each twist region and removing full twists.

This process is depicted in the first three pictures of Figure 3. The trivial components
introduced are called crossing circles while those from the original link are called knot
circles. The fourth picture indicates how each FAL can be described via painted planar
trivalent graphs. Each crossing circle becomes a painted edge and each knot arc between
crossing circles becomes an unpainted edge. See Purcell [9] for more about FALs.

Figure 3: Example of turning link into FAL and its corresponding graph

Beginning with a topological space (like an FAL complement), one can realize a hy-
perbolic structure on it in the following way. Let M be a three-manifold, and choose a
cell decomposition consisting of vertices (0-cells), edges (1-cells), faces (2-cells), and balls
(3-cells). Slice along the faces of the cell decomposition to cut M into pieces homeomor-
phic to 3-cells F1, . . . , Fn, keeping track of how to glue the faces to piece M back together.
Now realize each 3-cell Fi as a polyhedron in hyperbolic space. Think of these as your
hyperbolic building blocks, and the gluing instructions on them tell you how to stack
them together to get M . As long as some technical restrictions are satisfied (which make
sure the blocks fit together nicely around edges and at corners), this places a hyperbolic
structure on M (see Bonahon [4] for a nice exposition). We now apply this technique to
FAL complements.
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To see the hyperbolic structure on an FAL complement we describe a cell decomposi-
tion of S3 \L. The components of the cell decomposition of an FAL are illustrated in the
leftmost picture of Figure 4.

There are two types of 2-cells, which we describe first.

Definition 2.4 Each crossing circle bounds a disk that is punctured twice by knot circles.
These are called crossing disks.

Definition 2.5 The knot circles cut the projection plane into pieces which make up the
second kind of 2-cell, called planar disks.

The planar and crossing disks meet orthogonally, and their intersections form the edges,
or 1-cells, of the cell decomposition. Note that the endpoints of these edges lie on the
FAL, so not in its complement. Hence there are no 0-cells. Finally there are two 3-cells
B3

± corresponding to the regions above and below the plane of projection. We summarize
this below.

• 0-cells: None, since the endpoints of edges correspond to ideal points.

• 1-cells: Intersections of planar and crossing disks.

• 2-cells: The crossing disks, and planar disks.

• 3-cells: Everything above and below the projection plane, B3
+ and B3

−.

Figure 4: Polyhedral decomposition of an FAL

By the symmetry inherent in an FAL, note that the cell decomposition on B3
− is the

reflection of that on B3
+ across the projection plane. This cell decomposition can be used

to obtain the polyhedral decomposition of an FAL. The following steps are illustrated in
the middle 4 pictures of Figure 4.

1. Slice along planar two cells separating B3
±. Since B3

+ and B3
− are reflections of one

another across the projection plane, let’s focus on B3
+

2. Slice crossing disks along the 1 cells and flatten out.

3. Shrink crossing arcs, so now the crossing disks look like bow ties.
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4. Shrink knot arcs.
The significance of the rightmost diagram of Figure 4 is that it can be used to describe

a right-angled ideal polyhedron P+. Indeed, the unshaded faces of the diagram can become
a circle packing in which all shaded regions are triangular (see Figure 5a). Purcell in [9]
(see Figure a) shows how this determines a right-angled ideal polyhedron. The polyhedron
P− is obtained in an analogous way, and the link complement is achieved by gluing P+

and P− together, as seen below.

Figure 5: Left to right: a) circle packing b) nerve graph c) dual graph

There are two combinatorial ways to describe this polyhedral decomposition. The first
way is the nerve which is a graph composed of triangular faces. Each vertex represents
the center of circles in the circle packing and all edges represents the points of tangency
between the circles, see Figure 5b. Another way to represent the polyhedral decomposition
is the dual to the nerve. The dual of a planar graph has a vertex on each face of the original
graph and vertices connected by edges going through the original graph’s edges (see Figure
5c). Since the nerve is a triangulation of S2, its dual will be a planar trivalent graph.

Figure 6: Examples of perfect matchings on the 6-vertex graph

The hyperbolic geometry of FALs, then, can be conveniently described using planar
trivalent graphs. This process can be reversed provided one properly ‘‘colors” edges on
a planar trivalent graph. It turns out the coloring of a dual corresponds to a perfect
matching of the dual.

Definition 2.6 A matching in a graph is a subset of edges in which no two edges have a
common vertex. The two vertices of an edge in a matching can be thought of as matched
or paired. A perfect matching in a graph is a matching in which every vertex is paired to
another.

Examples of perfect matchings in a dual are seen in Figure 6 as colorings of the dual.
Perfect matchings are the well-painted graphs of Purcell [9], who shows they correspond
to FALs. An example of a colored graph and its FAL can be seen in Figure 3.
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3 Planar Trivalent Graphs and Cell Decomposition

This section makes the connection between fully augmented links and graphs precise.
We have already seen that planar trivalent graphs arise naturally in the FAL setting as
the duals to nerves of the circle packing. More generally, trivalent graphs embedded in
3-manifolds have been studied independently of FALs. Suppose we are given a trivalent
graph G embedded in a 3-manifold M . Heard, et al, observe that when the complement
M \G admits a hyperbolic structure in which meridians of edges of G are parabolic isome-
tries, then M \G is a hyperbolic manifold with boundary consisting of thrice-punctured
spheres (see [5]). In the case where M is the three-sphere and G is a planar trivalent
graph, then M \ G turns out to be obtained from an FAL complement by slicing along
all crossing disks.

We begin this section with relevant definitions. A cell decomposition on M \G is then
described, and the resulting polyhedra are shown to be equivalent to those described for
FALs in the previous section.

Definition 3.1 The medial graph Gm of a graph G, is defined to have midpoints of edges
of G as vertices, with edges connecting midpoints of adjacent edges.

Figure 7: Creating a medial graph: place vertices on midpoints of edges, connect mid-
points of adjacent edges.

The medial graph Gm of a planar trivalent graph G cuts the plane into regions that
can be checkerboard colored so that each shaded face is triangular. The shaded triangles
contain the vertices of the original graph G.

There is a connection between the checkerboard coloring of Gm and circle packings of
FALs. More precisely the unshaded regions of Gm can be isotoped to a circle packing and
the shaded triangles become the shaded regions of the circle packing.

Figure 8: Dual, dual’s medial graph, and circle packing

Recall that Heard, et al, show that under certain circumstances M \G is a hyperbolic
manifold with boundary, whose boundary is comprised of thrice-punctured spheres. Each
thrice-punctured sphere in the boundary of M \G can be visualized on the graph at each
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vertex. A sphere encircles each vertex and the edges radiating from the vertex creating
three punctures in the sphere.

Thus when studying planar trivalent graphs embedded in three manifolds it is nat-
ural to consider replacing vertices with thrice-punctured spheres. Moreover, Masai and
Hodgson [6] observe that planar trivalent graphs embedded in S3 give rise to FALs by ap-
propriate gluings on the thrice-punctured sphere boundary components. Rather than rely
on Masai’s observations [8], we directly describe a cell decomposition on planar trivalent
graphs in S3 (with thrice-punctured spheres surrounding the vertices). This cell decom-
position will give rise to right angled ideal polyhedra P± analogous to the FAL setting.
The resulting components of the cell decomposition of a trivalent planar graph are

• 0-cells: None, since ideal polyhedrons are used

• 1-cells: Intersection of the spheres with the plane

• 2-cells: The thrice-punctured spheres and the planar regions

• 3-cells: The regions above and below the plane, B+ and B−

To obtain a cell decomposition of a planar trivalent graph, refer to Figure 9: Let G
be a planar trivalent graph with each vertex replaced with a thrice-punctured sphere.
To see the hyperbolic structure on a S3 \ G, slice along the planar two-cells to separate
it into two pieces. Focusing on the top half, the sliced thrice-punctured spheres form
triangles and edges of G surround planar regions. Shrinking edges of G to points results
in a checkerboard colored cell decomposition where the unshaded faces can form a circle
packing. As in the FAL setting these can be realized geometrically as polyhedra P±. In
this setting, gluing only unshaded faces, and leaving shaded triangles above them, yields
S3\G. Comparing this construction with the hyperbolic structure on an FAL complement
shows that S3 \G is an FAL sliced along its crossing disks.

Figure 9: Cell decomposition of the planar graph

4 Exact Volumes

Now that we have an explicit construction for the hyperbolic structure on the complement
of planar trivalent graphs in S3, let’s proceed with explicit volume calculations for graphs
with few vertices. The goal for this section is to compute exact volume upper bounds for
graphs with up to twelve vertices.

Let’s begin with an example which walks through the process of finding the volume
of a graph, referring to Figure 10.
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Figure 10: Dual graph and conversion to FAL

We start with the trivalent planar graph whose volume we want to find. In the middle
image we color the graph with a perfect matching. We use the coloring to find the
corresponding FAL, colored edges turning into trivial crossing circles (depicted as half
arcs), and the uncolored edges becoming knot arcs as seen on the right. The FAL is then
drawn in SnapPy [10] and we use the program to calculate the volume (see Figure 11).
SnapPy is a program that was also used by [5] to calculate the volumes of hyperbolic
graphs. As you can see, the volume of this particular graph is 53.403.

Figure 11: Drawing FAL into SnapPy

This process is repeated for several small trivalent planar graphs. Using a table of
simple trivalent graphs [11] we determined which are planar. To find the volume of planar
ones, we used perfect matchings to find associated FALs, then used the SnapPy program to
compute the volume. This method is limited in that after 12 vertices, there are too many
graphs to find volumes by hand, and by the fact that SnapPy is restricted on the number
of components it can manage. The calculated maximum volume for graphs is compared
with Agol-Thurston’s bound and with Adam’s collapsed bipyramidal construction below.
This table coincides with and extends Masai’s calculations in [8]. Notice that the table
of Figure 12 only contains graphs with an even number of vertices. We leave it as an
exercise for the reader to confirm that all planar trivalent graphs have an even number of
vertices.
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Vertices Maximum Volume Agol-Thurston Adams
4 7.3277 10.1494 8.1192
6 14.6554 20.2988 15.8426
8 24.0922 30.4482 24.1882
10 32.5515 40.5676 35.8803
12 41.4162 50.747 45.8095

Figure 12: The maximum volume graphs in ascending vertex count order.

There are unique 4-vertex and 6-vertex trivalent planar graphs, which makes it easy
to compute the maximum (and minimum) volume. To obtain the maximum volume
for 8- and 10-vertex graphs, we compiled an exhaustive list, computing all volumes, to
obtain the maximum volume. There are too many 12-vertex trivalent planar graphs for
the exhaustive approach to be feasible. Instead we used a relationship between edge
connectivity and volume to find a volume upper bound in this case.

Let G be a trivalent planar graph in S3 such that M = S3\G has a hyperbolic structure
with parabolic meridians. If G has a 3-cut (three edges whose removal separates G into
two non-trivial graphs), it turns out vol(M) decomposes in a nice way.

More precisely, there is a sphere S in S3 intersecting G in three points, one point
on each edge of the 3-cut (see dotted line in Figure 13). In M then, S is a sphere with
three punctures - a thrice-punctured sphere. Adams work from [1] implies that any such
thrice-punctured sphere S in M is is totally geodesic, so one can slice along it and get two
manifolds, whose volumes add to the volume of the original manifold. Moreover, slicing
along S just creates 2 new trivalent planar graphs by considering the copies of S to be
thrice-punctured spheres around new vertices (see the bottom row of Figure 13).

Figure 13: Slicing and 10 vertex graph along a 3-cut. Cut edges are joined at a new
vertex. So the volume of the 10 vertex graph is the sum of the 2 prime graphs.

The purpose of this discussion is the following observation.
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Lemma 4.1 If G is a n-vertex hyperbolic planar trivalent graph in S3 containing a 3-
cut, then there are hyperbolic trivalent planar graphs G1 and G2 with n1 and n2 vertices
satisfying

vol(S3 \G) = vol(S3 \G1) + vol(S3\ G2),

where n1 + n2 = n + 2.

Proof. Since G has a 3-cut , S3 \ G contains a thrice-punctured sphere S and shows the
existence of G1, G2. Moreover, slicing along S produces two additional vertices, proving
n1 + n2 = n + 2. □

Note that the maximum-volume trivalent planar graphs with at most 10 vertices are
4-connected. In other words, they have no 3-cuts. Motivated by this observation, we
focused on calculating the volumes of 4-connected 12-vertex graphs, of which there are
only two (see graphs 12.1 and 12.2 in Figure 14).

Lemma 4.2 The maximum volume of a 12-vertex hyperbolic planar graph is 41.4162.

Proof. To see this, compare the maximal calculated volume 41.4162 to the volumes of
12-vertex graphs with a 3-cut. By Lemma 4.1, this amounts to summing volumes of two
graphs whose vertices add up to n1 + n2 = 12 + 2 = 14. This sum is at most the sum of
the upper bounds we have already found corresponding to n1- and n2-vertices. A quick
check of the appropriate values in Figure 12 show these sum to less than 41.4162. □

Figure 14: The following table’s planar trivalent graphs.

In the following table the graphs are denoted by their labeling in Figure 14. Each
planar trivalent graph decomposes the plane into polygons. The next four columns record
how many polygons of a certain number of edges arise. These faces are used to help
determine the uncollapsed bipyramidal volume, which is an upper bound for the planar
trivalent graphs and is described in Section 5.2. The final column calculates the bipyra-
midal upper bound volume without collapsing. The computed volumes clearly show that
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the actual volume of the graphs are always lower than the uncollapsed bipyramidal bound
on volume.

Graph 3-edged face 4 5 6 Volume Uncollapsed Bipyr Vol
4 4 0 0 0 7.3276 16.2384
6 2 3 0 0 14.6552 27.2298

8.1 0 6 0 0 24.0921 38.2212
8.2 2 2 2 0 21.98 37.599
10.1 0 5 2 0 32.5515 48.5904
10.2 1 3 3 0 31.4199 48.2793
10.3 2 3 0 2 29.3109 47.5282
10.4 3 0 3 1 29.3109 47.4371
10.5 2 2 2 1 29.3109 47.7482
12.1 0 6 0 2 40.5977 58.5196
12.2 0 4 4 0 41.4162 58.9596

5 Volume Bounds

In this section we provide both lower and upper bounds for volumes of hyperbolic planar
trivalent graphs. The lower bound is a direct consequence of Purcell’s work on FALs. We
present two upper bounds, translating the work of Agol-Thurston and Adams into the
graph theoretic setting. Finally, we construct examples that show the upper bounds are
asymptotically sharp.

5.1 Lower Bound

A lower bound for volumes of hyperbolic FALs appears in [9], in which Proposition 3.6
states

Proposition 5.1 (Purcell) If L is a hyperbolic fully augmented link with c crossing
circles, then

vol(S3 \ L) ≥ 2v8(c - 1)

where v8 = 3.66386... is the volume of a regular ideal octahedron. Moreover

vol(S3 \ L) = 2v8(c - 1)

if and only if S3 \ L decomposes into regular ideal octahedra.

Recall that a perfect matching on a trivalent planar graph G corresponds to an FAL
with the same volume (see Figure 13). In particular, note that crossing circles in the FAL
correspond to pairs of vertices that are matched in G.

Given any trivalent planar graph G with V vertices, then one can construct an FAL
with the same volume and V

2
crossing circles, see Figure 10 to compare vertices and
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crossing circles. Thus a lower bound on the volumes of FALs also gives a lower bound on
volumes of graphs. Hence any hyperbolic planar trivalent graph G satisfies

vol(S3 \G) ≥ 2v8

(
V

2
− 1

)
= v8(V − 2)

Purcell’s bound is sharp and we summarize Purcell’s construction.
A central subdivision of a triangular face in the nerve corresponds to adding a vertex

inside a face and connecting it to the original vertices (compare graphs labeled “nerve”
in Figure 15).

Purcell observes that each successive central subdivision of a triangle within the nerve
adds a circle in one of the shaded triangles in the nerve’s circle packing. The adding of a
circle in a triangle of the circle packing is the same as adding an ideal regular octahedron.
This result is not immediately obvious, and verifying it would take us too far afield. We
refer the interested reader to Section 3.3, and more specifically Proposition 3.8, of [9]
for a thorough treatment. By repeatedly adding regular ideal octahedra, then, one can
construct FALs with the desired volume.

To see that Purcell’s (see Figure 15 and the proof of [9, Prop 3.8]) lower bound is
sharp for planar trivalent graphs, one need only translate what central subdivisions in
the nerve correspond to in the dual. The central subdivision of a nerve is equivalent to
turning a vertex of the trivalent graph into a triangle. Indeed, the triangular face in the
original nerve corresponds to a single vertex in the dual. Centrally subdividing that face
corresponds to a triangle in the dual (compare graphs labeled “dual” in Figure 15). Thus
beginning with K4 and repeatedly replacing vertices with triangles yields trivalent planar
graphs whose volumes are v8(V − 2).

Figure 15: The effect of centrally subdividing a nerve on its dual and corresponding circle
packing.

The above argument proves the following:

Proposition 5.2 If G is a hyperbolic planar trivalent graph with V vertices then

vol(S3 \G) ≥ v8(V − 2).

Moreover, this lower bound is sharp.
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5.2 Upper Bounds

We now will apply techniques for finding upper bounds on volumes of hyperbolic links
to the trivalent graph setting. In particular, we will translate both Agol-Thurston’s
tetrahedral upper bound and Adams’ bipyramid construction to trivalent planar graphs.
Recall that v3 is the volume of an ideal regular tetrahedron.

5.2.1 Agol-Thurston’s Upper Bound

Agol-Thurston improved Lackenby’s [7] upper bound for the volume of links with a prime
alternating diagram. Their result was

Theorem 5.3 (Agol-Thurston) Given a projection diagram D of a link L with twist
number t(D) then

vol(S3 \ L) ≤ 10v3(t(D)− 1).

Moreover there is a sequence of links Li such that

vol(S3 \ L)/t(Di) → 10v3.

Overview of Proof
Given an alternating link L, Agol-Thurston prove their theorem by first creating an aug-
mented alternating link AL then cellularly decomposing it in a slightly different way from
Section 2. We shall call the decomposition here tetrahedral decomposition. Choose a
point v+ interior to P+ and connect each ideal vertex to it. Likewise, choose a point v−
interior of P− and perform the same construction. The result is that tetrahedra are then
placed on each shaded region, one each on P+ and P−. Noting that each twist region of
L yields a crossing circle of AL, which decomposes into 2 shaded regions, there are 4t(D)
tetrahedra on the shaded regions. The unshaded faces have two pyramids on them - one
in P+ and P−. The pyramids are divided into as many tetrahedra as it has sides by stellar
subdivision (see rightmost picture in Figure 16).

A stellar subdivision of an unshaded face F is obtained as follows. Connect vertices
v± with an edge through face F . The vertices of every edge in the boundary of F combine
with v± to form a tetrahedron. The union of these tetrahedra over all edges of F form
the stellar subdivision of the two pyramids on F .

Noting that there are 2t(D) shaded faces, each with 3 edges, we can see there are 6t(D)
edges in the tetrahedral cell decomposition. Since each edge contributes one tetrahedron
through an unshaded face, the number of tetrahedron given by the unshaded faces is
6t(D). Hence, the total number of tetrahedra so far is 10t(D). Now Agol-Thurston
collapse tetrahedra. To collapse tetrahedra, pick an ideal vertex w. Shrink the edges
joining w to v±, carrying the entire cell decomposition along in the shrinking process.
This process collapses all tetrahedra on the four faces adjacent to w, and leaves the
remaining tetrahedra. Since every 2 unshaded regions have at least 6 tetrahedra and
every 2 shaded regions have 4, we may collapse 10 tetrahedra, resulting in
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vol(S3 \ AL) ≤ 10v3(t(D)− 1).

The above holds since the maximum volume of a hyperbolic tetrahedron is v3 and realized
by a regular ideal tetrahedron. See Theorem C.2.1 of Benedetti-Petronio [3].

Figure 16: Placement of tetrahedra on shaded regions and stellar subdivision of unshaded
regions into tetrahedra.

The original link L is obtained by Dehn filling AL, which always reduces volume so

vol(S3 \ L) ≤ 10v3(t(D)− 1)

For more detail, please view Agol-Thurston’s proof in full in their appendix to Lack-
enby [7].

The difference between this tetrahedral cell decomposition and that of Section 2 is
that Section 2 is satisfied with constructing right-angled ideal polyhedra while the tetra-
hedral cell decomposition needed to decompose them into ideal tetrahedra for their vol-
ume bound. Thus the tetrahedral cell decomposition construction uses the same 2-cells
as Section 2, it just further decomposes P± into tetrahedra.

The Agol-Thurston upper bound for volume on the FAL AL translates immediately to
an upper bound on the volumes of trivalent planar graphs. Given a hyperbolic trivalent
planar graph G we’ve seen that it’s complement is obtained by gluing two right-angled
ideal polyhedra P± together along their unshaded faces. Using the tetrahedral procedure
further decomposes P± into tetrahedra, so their upper bound applies in the graph setting
as well.

We now complete the translation of the Agol-Thurston upper bound to the graph
setting. Recall that there is one vertex of G for every shaded triangle in the cell decom-
position of an associated FAL, and two shaded triangles in an FAL for every twist region
in a diagram; thus t(D) = V /2. This discussion proves:

Theorem 5.4 Given a hyperbolic trivalent planar graph G with V vertices,

vol(S3 \G) ≤ 10v3

(
V

2
− 1

)
.
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5.2.2 Adam’s Upper Bound

Adams improved on the Agol-Thurston upper bound for hyperbolic alternating links using
a bipyramidal construction. An n-sided bipyramid is an ideal polyhedron obtained by
gluing n ideal tetrahedra in a cycle around a common edge. Bipyramids arise in the
tetrahedral decomposition when considering the unshaded faces in P±. Agol and Thurston
place a pyramid on each unshaded face, so when gluing they become bipyramids. Agol
and Thurston decompose these bipyramids into tetrahedra using stellar subdivision. The
difference with Adams’ bipyramids is that stellar subdivision is unecessary in the unshaded
faces of the polyhedral decomposition. By using bipyramids through the faces of the
augmented link instead of stellar subdivisions the process is much more efficient, since the
volume of an n-sided bipyramid is always less than the volume of the sum of n tetrahedra.
Refer to Adams [1] for more detail on his upper bound for hyperbolic alternating links.

Figure 17: The upper halves of bipyramids and local collapsing.

Figure 18: An ideal bipyramid with edges going to infinity, the dotted line showing where
the projection plane intersects.

In Figure 17, the upper halves of bipyramids are displayed on the polyhedral cell
decomposition. Again choose a point in P+, and another P− interior to the polyhedra.
Coning those points to every vertex in the cell decomposition results in a bipyramid
corresponding to every face. The first image in Figure 17 displays only the top half of the
bipyramids for clarity. At this stage of Adams’ construction the bipyramids are coned to
finite vertices rather than ideal ones. Adams, as with Agol-Thurston, then picks one ideal
vertex and shrinks the edge connecting it to the finite vertex, carrying all edges along the
process. The second image of Figure 17 displays the regions around a chosen ideal point.
The third displays shrinking the edge at that ideal point and the flattening of adjacent
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faces that results from it. This collapsing at the ideal point also happens in the lower
half.

Adams’ upper bound would then be defined as the bipyramidal upper bound:

Theorem 5.5 (Adams) Given a projection diagram D of a hyperbolic link L which
decomposes the projection plane into bi i-gons,

vol(S3 \ L) ≤
∑

bivol(Bi)− k,

where bi is the amount of bipyramids with i sides, and Bi is the regular ideal bipyramid
with i-sides that maximizes volume. See [1] theorems 4.1 and 2.1 for more details.

Here k is the the volume of the two 3-sided bipyramids on the unshaded faces at
the chosen ideal point that collapse during the shrinking process. This k-value relates
to the a-value in Adams paper, but is more easily determined. The above theorem’s k-
value pertains to the FAL decomposition case and is determined by selecting the largest
adjacent unshaded faces that meet at the ideal point (see [1] for more detail).

As with the Agol-Thurston cell decomposition, Adams’ bipyramid construction can be
obtained by further subdividing the P± of Section 2. His upper bound, then, immediately
translates into the graph setting.

Theorem 5.6 Given a hyperbolic trivalent planar graph G with V vertices that decom-
poses the plane into bi i-gons, then

vol(S3 \G) ≤ Σbivol(Bi) + (V − 2)vol(B3)

Proof. Each vertex of G corresponds to a shaded triangle in the cell decomposition,
yielding a B3 bipyramid. Since two of these collapse, we get (V – 2) of them. Sec-
ondly, since each i-gon of G contributes an unshaded i-gon to the cell decomposition, the
summation is that of Adams’ theorem. □

Note that in Adams’ construction you can choose which ideal vertex to collapse toward.
He chooses to collapse to the vertex whose unshaded regions contribute the most volume
to his upper bound. The sum on the right does not include the volumes from these two
bipyramids. For simplicity, we let

BUB = Σbivol(Bi) + (V − 2)vol(B3)

represent the “Bipyramid Upper Bound” for the volume of S3 \G.

Remark 5.7 Note that by construction Adams’ upper bound is lower than the Agol-
Thurston upper bound. Adams’ bound is lower than Agol-Thurston’s bound because
n-sided regular ideal bipyramids have less volume than n regular ideal tetrahedra. Agol-
Thurston have shown their upper bound to be asymptotically sharp. They do this by
constructing an infinite family of links with volumes approaching their bound. Since
Adams’ bipyramid bound is lower than the Agol-Thurston bound, it must be asymptoti-
cally sharp as well.
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By revisiting the example of the exact volume of a graph calculated in Section 4, we
shall walk through the process of obtaining the bipyramidal upper bound volume of the
graph in Figure 19.

Figure 19: From left to right: the 16 vertex hexagonal graph, cellular decomposition via
medial graph, circle packing, blue shaded regions are what is eliminated surrounding the
black dot which is chosen as the vertex to collapse

First each face is either a triangle or a hexagon. Counting the number of each type,
we see within the dual:

Number of Edges Bounding 3 6
Number of Faces 4 6

Recalling that the medial graph corresponds to the polyhedral decomposition, we see
that each vertex in the dual corresponds to a three-sided face on the boundary of P±. So
adding the number of vertices, 16, informs that the polyhedral decomposition has:

n-Sided Face 3 6
Number of Faces 20 6

Now we must collapse the two largest faces, which share the line that arcs around half
the graph. In this example the two largest faces are both 6-sided. We must also collapse
the bipyramids on the two adjacent shaded faces. This results in a final bipyramid count
of

n-Sided Bipyramid 3 6
Number of Bipyramids 18 4

Noting that the volume of a 3-sided bipyramid is 2.0298 and a 6-sided bipyramid is
6.0896 for regular ideal bipyramids (see Table 1 from [1]) then the bipyramidal volume
upper bound is

18vol(B3) + 4vol(B6) = 18 ∗ 2.0298 + 4 ∗ 6.0896
= 60.8948

Calculations similar to this, but without the collapsing, were used to complete the
table of Section 4.
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5.2.3 Putting Together Agol-Thurston and Adams

Agol-Thurston show their upper bound is asymptotically sharp by doing complex poly-
hedral gluings on the infinite chain link fence. Since Adams’ bound is lower, this proves
it is asymptotically sharp for links as well. A priori, our translation of Adams’ bound
to trivalent graphs could be asymptotically lower than that of Agol-Thurston. We prove
that this is not the case, rather the two bounds are asymptotically equivalent.

Theorem 5.8 Given a planar trivalent graph G having V vertices and bipyramidal upper
bound (BUB)

BUB ≤ 10v3(
V
2
− 1).

Moreover there is a sequence of graphs G where

BUB/V
2
→ 10v3.

Proof. To prove the asymptotic result we note that Agol-Thurston’s infinite chain-link
fence translates into a hexagonal tesselation of R2 in the trivalent graph setting. We
choose a finite approximation Hm of the hexagonal tesselation for every even m ≥ 4 (see
Figure 20).

Figure 20: Finite approximations of the infinite chain-link fence.

The graph Hm cuts the plane into polygonal faces. To compute BUB(Hm) we begin by
counting the number of faces of each type. It can be noted that there are m2 hexagonal
faces. There are also 2m triangular faces, and two 3m-sided faces (the largest faces). Recall
Adam’s bipyramidal construction in Section 5.2.2., in which collapsing the largest faces
results in the least upper bound for the bipyramid construction. We will be collapsing
the 2 largest faces since their sharing of an edge in the planar trivalent graph translates
to an ideal point in the FAL’s cell decomposition.

To complete our calculation of BUB(Hm) we also need the number of vertices, which
will each have a 3-sided bipyramid through them (except for the 2 collapsed at the ideal
point). To obtain this number, we shall utilize the Euler characteristic and the graph’s
trivalent property. The graph Hm gives a cell decomposition of S2, so the number of
vertices, edges and faces satisfies V - E + F = 2. Moreover, a trivalent graph has degree
three on each vertex, and summing the degrees of the vertices counts each edge in a graph
twice, allowing us to see that 3V = 2E.
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Thus by substituting, we have

V − E + F = 2

V − 3V

2
+m2 + 2m+ 2 = 2

m2 + 2m =
V

2
2m2 + 4m = V.

Using Adams bipyramidal construction we place n-sided bipyramids on all n-sided
faces and 3-sided bipyramids on all vertices. Finally we collapse the two largest faces
together with the adjacent shaded triangles. We then see

BUB(Hm) = m2vol(B6) + (2m+ 2m2 + 4m− 2)vol(B3)

= m2vol(B6) + (2m2 + 6m− 2)vol(B3).

Noting vol(B6) = 6.0896 = 6v3 and vol(B3) = 2.0298 = 2v3 (see Table 1 of Adams
[1]).

BUB(Hm) = m26v3 + (2m2 + 6m− 2)2v3

= m26v3 +m24v3 +m12v3 − 4v3

= m210v3 +m12v3 − 4v3

To show BUB(Hm)/V
2
→ 10v3 divide sides by V

2
and take a limit as m goes to infinity:

lim
m→∞

BUB(Hm)

m2 + 2m
= lim

m→∞

m210v3 +m12v3 − 4v3
m2 + 2m

= 10v3.

This verifies the asymptotic behavior of BUB(Hm). Since Adam’s shows that his
bipyramid construction is always at most the tetrahedral constant of Agol-Thurston, we
also have

BUB ≤ 10v3(
V
2
− 1).

□
Despite supporting that 10v3 is an optimal coefficient to the upper bound on volume,

there are still several unknowns in the bipyramidal volume construction for trivalent
graphs. Since this paper works with small trivalent graphs, the hexagonal construction
may not be the graph of the maximum volume for a given number of vertices.
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6 Future Research

This project has suggested many questions that can be explored more extensively to find
potentially lovely results.

• Is there any way to further improve the bipyramid bound? (see [7])

• What volume bounds exist for non-planar graphs?

• Show that 4-connected graphs also reach the upper bound for large enough vertices.

• Is there a lower bound for the hexagon family graphs?

• Can Lackenby’s article on guts of surfaces be used to find a lower bound on the
maximum volume of graphs?

• Is there a way to prove that graph connectivity is related to the graphs with maxi-
mum volume?
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