Commuting Graphs of Split Metacyclic Groups

E. Gonzalez

Abstract

We study the link between groups and graphs created by considering the commuting graph of a group. We focus our efforts on groups that can be represented as the semidirect product of cyclic groups, and we describe the commuting graphs of two classes of such groups.

Keywords : commuting graph of a group; semidirect product; split metacyclic group
Mathematics Subject Classification (2010) : 05C25

This note is organized as follows. In Section 1 we recall a few definitions. In Section 2 we work with dihedral-like groups, and in Section 3 we approach groups with more complex structure.

1 Background

Given a group G, the center of G is

$$
Z(G)=\{g \in G ; g x=x g, \text { for all } x \in G\}
$$

Clearly, G is abelian if and only if $Z(G)=G$. When G is not abelian, we define the commuting graph of G, denoted $\mathcal{C}(G)$ by having vertex-set $G \backslash Z(G)$ and edges connecting vertices g_{1} and g_{2} if and only if $g_{1} g_{2}=g_{2} g_{1}$.

In this note we obtain a simple presentation of $\mathcal{C}(G)$ in the case G is a semidirect product of certain cyclic groups. In this way, we generalize results obtained in [1], [5], [6], and [7].

A well-known object in group theory is the semidirect product of two groups (see, e.g., [2]). Since we will work with groups of this type, we define them next. Let H and K be groups and let $\phi: K \rightarrow \operatorname{Aut}(H)$ be a homomorphism. In order to avoid confusion, we will use the notation $\phi(k)=\phi_{k}$. Let $G=H \times K$ be endowed with the operation:

$$
(h, k)(a, b)=\left(h \phi_{k}(a), k b\right)
$$

This multiplication makes G into a group, called the semidirect product of H and K, with respect to ϕ. We will denote this group by $H \rtimes_{\phi} K$. It is known that if a group
G has two subgroups, H and K, so that $H K=G, H \unlhd G$, and $H \cap K=\{e\}$, then $G \cong H \rtimes_{\phi} K$, for some ϕ.

We recall now the definition of split metacyclic groups, which are semidirect products of cyclic groups:

Definition 1.1 [3] A group is called split metacyclic if it has the following presentation:

$$
G_{\alpha, \beta, \gamma}=<a, b ; a^{\alpha}=b^{\beta}=1, \quad a b a^{-1}=b^{\gamma}>
$$

where $\alpha, \beta, \gamma \in \mathbb{N}$, and $\beta \mid \gamma^{\alpha}-1$ (note that this implies that $\operatorname{gcd}(\beta, \gamma)=1$).
We remark that these groups are called metacyclic on page 462 of [4]. As remarked in [3], the integers α, β, γ do not identify the isomorphism type of the group. The example given in [3] is $G_{6,36,19} \simeq G_{18,12,7}$, but a simpler example is $G_{3,7,2} \simeq G_{3,7,4}$ (see the discussion at the beginning of Section 3).

We have that $G_{\alpha, \beta, \gamma}=\mathbb{Z}_{\beta} \rtimes_{\phi} \mathbb{Z}_{\alpha}$, where $\phi \in \operatorname{Aut}\left(\mathbb{Z}_{\beta}\right)$ is defined by $\phi(b)=b^{\gamma}$ (we write the operation of \mathbb{Z}_{β} as multiplication instead of addition).

2 Dihedral-like Groups

We start by considering dihedral-like groups, which are split metacyclic groups $G_{2 n}^{i}=$ $G_{n, 2, i}$ with $i>1$. By Definition 1.1, it follows that they can be presented as

$$
G_{2 n}^{i}=<s, r ; r^{n}=s^{2}=e, s r s^{-1}=r^{i}>
$$

where $n, i \in \mathbb{N}, n>1$, and $1<i<n(i=1$ is uninteresting to us in this paper, as $G_{2 n}^{1} \simeq \mathbb{Z}_{n} \times \mathbb{Z}_{2}$ is abelian) satisfies $i^{2} \equiv 1(\bmod n)$. In conclusion, we can simply say that i has order 2 modulo n. Note that $G_{2 n}^{i} \simeq \mathbb{Z}_{n} \rtimes \mathbb{Z}_{2}$, for every i, and that $G_{2 n}^{n-1} \simeq D_{2 n}$ (the standard dihedral group of order $2 n$).

Lemma 2.1 Let $n, i \in \mathbb{N}, 1<i<n$, and $d=\operatorname{gcd}(i-1, n)$. Then, $Z\left(G_{2 n}^{i}\right)=<r^{n / d}>$, and thus $\left|Z\left(G_{2 n}^{i}\right)\right|=d$.
Proof. Assume that $s r^{k} \in Z\left(G_{2 n}^{i}\right)$. This element would commute with every element of the form r^{j}. Hence, we get

$$
s r^{k+j}=\left(s r^{k}\right)\left(r^{j}\right)=\left(r^{j}\right)\left(s r^{k}\right)=s\left(s r^{j} s\right) r^{k}=s r^{i j} r^{k}=s r^{i j+k}
$$

It follows that $k+j \equiv i j+k(\bmod n)$, and thus $j \equiv i j(\bmod n)$, for every j. This is false, and so $s r^{k} \notin Z\left(G_{2 n}^{i}\right)$, for all k.

Now we assume that $r^{k} \in Z\left(G_{2 n}^{i}\right)$. This element commutes with, at least, all elements of the form r^{j}. We only need to check when it would commute with s. We get

$$
s r^{k}=r^{k} s=s\left(s r^{k} s\right)=s r^{i k}
$$

and thus $k \equiv i k(\bmod n)$, which implies $n \mid k(i-1)$. It follows that $\frac{n}{d}$ divides $k \cdot \frac{i-1}{d}$, but this implies that $\frac{n}{d}$ divides k. Hence, k has the form $\frac{n}{d} t$, for $t=1,2, \ldots, d$.

Theorem 2.2 Let $n, i \in \mathbb{N}, 1<i<n$, and $d=\operatorname{gcd}(i-1, n)$. Then, $\mathcal{C}\left(G_{2 n}^{i}\right)$ is the disjoint union of $d+1$ complete graphs; one K_{n-d} and $\frac{n}{d}$ copies of K_{d}.
Proof. The vertex-set of $\mathcal{C}\left(G_{2 n}^{i}\right)$ contains all the elements of the form $s r^{k}$, and the elements r^{k}, for $k \neq \frac{n}{d} t$, for $t=1,2, \ldots, d$.

We know that elements in $\langle r\rangle$ commute with each other. Now, none of the elements in $\langle r\rangle \backslash\left\langle r^{n / d}\right\rangle$ commutes with elements of the form $s r^{k}$, as if any did then they would commute with s, and thus would be in the center. Hence, elements in $<r>\backslash<r^{n / d}>$ commute only among themselves. This yields a complete graph on $n-d$ vertices in $\mathcal{C}\left(G_{2 n}^{i}\right)$.

Next we check when $\left(s r^{k}\right)\left(s r^{j}\right)=\left(s r^{j}\right)\left(s r^{k}\right)$ occurs. Assuming this, we get:

$$
r^{i k+j}=r^{i k} r^{j}=\left(s r^{k} s\right) r^{j}=\left(s r^{k}\right)\left(s r^{j}\right)=\left(s r^{j}\right)\left(s r^{k}\right)=\left(s r^{j} s\right) r^{k}=r^{i j} r^{k}=r^{i j+k}
$$

which implies $i k+j \equiv i j+k(\bmod n)$. We re-write this equation as $i(k-j) \equiv k-j$ $(\bmod n)$, and notice that this equation was already solved in the proof of Lemma 2.1. It follows that $k-j$ has the form $\frac{n}{d} t$, for $t=1,2, \ldots, d$. This yields $\frac{n}{d}$ complete graphs on d vertices in $\mathcal{C}\left(G_{2 n}^{i}\right)$.

Remark 2.3 Since we know that the structure of $\mathcal{C}\left(G_{2 n}^{i}\right)$ is a disjoint union of complete graphs, it is now easy to find standard values associated to graphs, such as the minimum/maximum degree, diameter, chromatic number, etc. These parameters were part of the motivation given by authors in [1], [5], [6], and [7].

3 Groups of Order $n q$, for q Prime and $n \mid q-1$

We start by recalling a well-known construction. Consider a non-abelian group $G_{p q}$, of order $p q$, where p and q are odd primes and $p<q$. Since $G_{p q}$ is non-abelian, we must have that $p \mid q-1, Z\left(G_{p q}\right)=\{e\}$, and $G_{p q} \cong \mathbb{Z}_{q} \rtimes \mathbb{Z}_{p}$. Moreover, the structure of $G_{p q}$ does not depend on ϕ (see [2], Section 5.5), and so we can present it as follows:

$$
G_{p q}=<x, y ; x^{q}=y^{p}=e, y x y^{-1}=x^{z}>
$$

where z has order p in \mathbb{Z}_{q}^{*}. With the notation of Definition 1.1, we have that $G_{p q}=G_{p, q, z}$ for all $z \neq 1$.

Instead of considering this group, we will next look at the non-abelian split metacyclic group $G_{n, q, z}$, where q is an odd prime and z has order n modulo $q-1$. We will denote such a group by $G_{n q}^{z}$. This is a non-abelian group, of order $n q$, isomorphic to $\mathbb{Z}_{q} \rtimes_{\phi} \mathbb{Z}_{n}$, for some homomorphism $\phi: \mathbb{Z}_{n} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{q}\right)$, and has the following presentation

$$
G_{n q}^{z}=<x, y ; x^{q}=y^{n}=e, y x y^{-1}=x^{z}>
$$

where $1<z<q$ has order n modulo q. That is, $\operatorname{gcd}(z, q)=1$, $z^{n} \equiv 1(\bmod q)$, and $z^{i} \not \equiv 1(\bmod q)$, for all $1 \leq i<n$. Note that this implies that $n \mid q-1$.

Remark 3.1 In $G_{n q}^{z}$, we get

$$
y^{j} x y^{-j}=y^{j-1}\left(y x y^{-1}\right) y^{-j+1}=y^{j-1}\left(x^{z}\right) y^{-j+1}=\left(y^{j-1} x y^{-j+1}\right)^{z}
$$

and so, an induction argument yields

$$
y^{j} x y^{-j}=x^{z^{j}}
$$

for all $j \in \mathbb{N}$. Note that the expression above also works for $j=0$.
Next, we find the general structure of $\mathcal{C}\left(G_{n q}^{z}\right)$.
Theorem 3.2 Let $n, q, z \in \mathbb{N}$, where q is an odd prime, $n \mid q-1$, and $1<z<q$ has order n modulo q. Then, $Z\left(G_{n q}^{z}\right)=\{e\}$ and $\mathcal{C}\left(G_{n q}^{z}\right)$ consists of $q+1$ disjoint graphs: one K_{q-1}, and q copies of K_{n-1}.
Proof. Fix the element $x^{a} \in G_{n q}^{z}$, where $0<a<q$. Clearly x^{a} commutes with all the elements in $\langle x\rangle$. Now we will see what other elements commute with x^{a}. We take y^{j}, where $0<j<n$, and assume x^{a} commutes with it. We get:

$$
\begin{aligned}
x^{a} y^{j} & =y^{j} x^{a} \\
x^{a} & =y^{j} x^{a} y^{-j} \\
x^{a} & =\left(y^{j} x y^{-j}\right)^{a} \\
x^{a} & =x^{a \cdot z^{j}}
\end{aligned}
$$

which implies $a \equiv a \cdot z^{j}(\bmod q)$. Since q is prime and $0<a<q$, we get that $z^{j} \equiv 1$ $(\bmod q)$. However, $0<j<n$ and the order of z modulo q is n, a contradiction. It follows that x^{a} commutes only with the elements in $\langle x\rangle$. Hence, $\left.Z\left(G_{p q}^{z}\right) \cap<x\right\rangle=\{e\}$, and thus that the degree of x^{a} in $\mathcal{C}\left(G_{n q}^{z}\right)$ is $q-2$ (we do not count e and x^{a}). Moreover, the vertex-set $\langle x\rangle \backslash\{e\}$ induces a complete graph on $q-1$ vertices in $\mathcal{C}\left(G_{n q}^{z}\right)$.

Similarly, the vertex-set $\langle y>\backslash\{e\}$ induces a complete graph on $n-1$ vertices in $\mathcal{C}\left(G_{n q}^{z}\right)$. These two complete graphs are disjoint from all other vertices in $\mathcal{C}\left(G_{n q}^{z}\right)$.

Now fix the element $x^{a} y^{b} \in G_{n q}^{z}$, where $0<a<q$ and $0<b<n$. Assume it commutes with $x^{i} y^{j}$, where $0<i<q$ and $0<j<n$. One of the products yields:

$$
\begin{aligned}
\left(x^{i} y^{j}\right)\left(x^{a} y^{b}\right) & =x^{i}\left(y^{j} x^{a} y^{-j}\right) y^{j} y^{b} \\
& =x^{i}\left(y^{j} x y^{-j}\right)^{a} y^{j+b} \\
& =x^{i} x^{a \cdot z^{j}} y^{j+b} \\
& =x^{i+a \cdot z^{j}} y^{j+b}
\end{aligned}
$$

Thus, assuming $\left(x^{i} y^{j}\right)\left(x^{a} y^{b}\right)=\left(x^{a} y^{b}\right)\left(x^{i} y^{j}\right)$ implies $x^{i+a \cdot z^{j}} y^{j+b}=x^{a+i \cdot z^{b}} y^{j+b}$. Hence, those two elements commute if and only if

$$
i+a \cdot z^{j} \equiv a+i \cdot z^{b} \quad(\bmod q)
$$

which can be re-written as

$$
\begin{equation*}
a\left(z^{j}-1\right) \equiv i\left(z^{b}-1\right) \quad(\bmod q) \tag{1}
\end{equation*}
$$

We want to solve Equation (1) for i and j, under the assumptions of a, b, q, z are given, and that $0<a, i<q$ and $0<b, j<n$. However, instead of doing that, we will only count how many solutions we can find for a fixed pair a, b.

Note that none of the four factors in Equation (1) are congruent to zero modulo q, either by assumption or because the order of z modulo q is larger than both b and j. Hence, once $0<j<n$ is fixed and using that q is prime, there is exactly one solution (modulo q) for i, namely

$$
a\left(z^{j}-1\right)\left(z^{b}-1\right)^{-1} \equiv i \quad(\bmod q)
$$

where $\left(z^{b}-1\right)^{-1}$ is the inverse of $\left(z^{b}-1\right)$ modulo q.
It follows that $x^{a} y^{b}$ commutes with exactly $n-1$ elements of $G_{n q}$, one of them being itself. Moreover, none of these elements is in the center of $G_{n q}$ because each one of them commutes with only $n-1$ elements. It follows that the degree of $x^{a} y^{b}$ in $\mathcal{C}\left(G_{n q}\right)$ is $n-2$.

Finally, we re-write

$$
a\left(z^{j}-1\right) \equiv i\left(z^{b}-1\right) \quad(\bmod q)
$$

using that q is prime and that both $z^{j}-1$ and $z^{b}-1$ are not congruent to zero modulo q. We get

$$
a\left(z^{b}-1\right)^{-1} \equiv i\left(z^{j}-1\right)^{-1} \quad(\bmod q)
$$

where inverses are taken modulo q. It follows that every two elements that commute with $x^{a} y^{b}$ must also commute with each other. Hence, the set of all elements commuting with $x^{a} y^{b}$ induce a complete graph in $\mathcal{C}\left(G_{n q}\right)$.

Just like we had for the dihedral-like groups, now that we completely know the structure of $\mathcal{C}\left(G_{n q}\right)$, it would be easy for us to find important values usually associated to graphs, such as the minimum/maximum degree, diameter, chromatic number, etc.

Acknowledgments

We thank the referee(s) for their valuable comments, they helped us improved the presentation of our results considerably.

References

[1] F. Ali, M. Salman, S. Huang, On the commuting graph of dihedral group. Comm. Algebra 44 (2016), 2389-2401.
[2] D. Dummit, R. Foote, Abstract algebra, Third edition, John Wiley \& Sons, Inc., Hoboken, NJ, 2004.
[3] S.P. Humphries, D.C. Skabelund, Character Tables of Metacyclic Groups, Glasgow Math. J., 57 (2015), 387-400.
[4] S. Mac Lane, G. Birkhoff, Algebra, The Macmillan Co., New York; Collier-Macmillan Ltd., London 1967.
[5] Z. Raza, S. Faizi, Commuting graphs of dihedral type groups. Appl. Math. E-Notes 13 (2013), 221-227.
[6] T. Tamizh Chelvam, K. Selvakumar, S. Raja, Commuting graphs on dihedral group. J. Math. and Comput. Sci. 2 (2011), 402-406.
[7] J. Vahidi, A. Asghar Talebi, The commuting graphs on groups $D_{2 n}$ and Q_{n}. J. Math. and Comput. Sci. 1 (2010), 123-127.

Erick Gonzalez
California State University, Fresno
5245 North Backer Avenue, Fresno, CA.
E-mail: erick13@mail.fresnostate.edu

Received: June 2, 2018 Accepted: December 1, 2018
Communicated by Serban Raianu

