Commuting Graphs of Split Metacyclic Groups

E. GONZALEZ

Abstract - We study the link between groups and graphs created by considering the commuting graph of a group. We focus our efforts on groups that can be represented as the semidirect product of cyclic groups, and we describe the commuting graphs of two classes of such groups.

Keywords : commuting graph of a group; semidirect product; split metacyclic group

Mathematics Subject Classification (2010) : 05C25

This note is organized as follows. In Section 1 we recall a few definitions. In Section 2 we work with dihedral-like groups, and in Section 3 we approach groups with more complex structure.

1 Background

Given a group G, the center of G is

$$Z(G) = \{ g \in G; gx = xg, \text{ for all } x \in G \}.$$

Clearly, G is abelian if and only if Z(G) = G. When G is not abelian, we define the commuting graph of G, denoted C(G) by having vertex-set $G \setminus Z(G)$ and edges connecting vertices g_1 and g_2 if and only if $g_1g_2 = g_2g_1$.

In this note we obtain a simple presentation of $\mathcal{C}(G)$ in the case G is a semidirect product of certain cyclic groups. In this way, we generalize results obtained in [1], [5], [6], and [7].

A well-known object in group theory is the semidirect product of two groups (see, e.g., [2]). Since we will work with groups of this type, we define them next. Let H and K be groups and let $\phi : K \to Aut(H)$ be a homomorphism. In order to avoid confusion, we will use the notation $\phi(k) = \phi_k$. Let $G = H \times K$ be endowed with the operation:

$$(h,k)(a,b) = (h\phi_k(a),kb)$$

This multiplication makes G into a group, called the semidirect product of H and K, with respect to ϕ . We will denote this group by $H \rtimes_{\phi} K$. It is known that if a group

G has two subgroups, H and K, so that HK = G, $H \leq G$, and $H \cap K = \{e\}$, then $G \cong H \rtimes_{\phi} K$, for some ϕ .

We recall now the definition of split metacyclic groups, which are semidirect products of cyclic groups:

Definition 1.1 [3] A group is called split metacyclic if it has the following presentation:

$$G_{\alpha,\beta,\gamma} = \langle a, b; a^{\alpha} = b^{\beta} = 1, \ aba^{-1} = b^{\gamma} \rangle,$$

where $\alpha, \beta, \gamma \in \mathbb{N}$, and $\beta | \gamma^{\alpha} - 1$ (note that this implies that $gcd(\beta, \gamma) = 1$).

We remark that these groups are called metacyclic on page 462 of [4]. As remarked in [3], the integers α, β, γ do not identify the isomorphism type of the group. The example given in [3] is $G_{6,36,19} \simeq G_{18,12,7}$, but a simpler example is $G_{3,7,2} \simeq G_{3,7,4}$ (see the discussion at the beginning of Section 3).

We have that $G_{\alpha,\beta,\gamma} = \mathbb{Z}_{\beta} \rtimes_{\phi} \mathbb{Z}_{\alpha}$, where $\phi \in Aut(\mathbb{Z}_{\beta})$ is defined by $\phi(b) = b^{\gamma}$ (we write the operation of \mathbb{Z}_{β} as multiplication instead of addition).

2 Dihedral-like Groups

We start by considering dihedral-like groups, which are split metacyclic groups $G_{2n}^i = G_{n,2,i}$ with i > 1. By Definition 1.1, it follows that they can be presented as

$$G_{2n}^i = \langle s, r; r^n = s^2 = e, srs^{-1} = r^i \rangle$$

where $n, i \in \mathbb{N}$, n > 1, and 1 < i < n (i = 1 is uninteresting to us in this paper, as $G_{2n}^1 \simeq \mathbb{Z}_n \times \mathbb{Z}_2$ is abelian) satisfies $i^2 \equiv 1 \pmod{n}$. In conclusion, we can simply say that *i* has order 2 modulo *n*. Note that $G_{2n}^i \simeq \mathbb{Z}_n \rtimes \mathbb{Z}_2$, for every *i*, and that $G_{2n}^{n-1} \simeq D_{2n}$ (the standard dihedral group of order 2n).

Lemma 2.1 Let $n, i \in \mathbb{N}$, 1 < i < n, and $d = \gcd(i - 1, n)$. Then, $Z(G_{2n}^i) = \langle r^{n/d} \rangle$, and thus $|Z(G_{2n}^i)| = d$.

Proof. Assume that $sr^k \in Z(G_{2n}^i)$. This element would commute with every element of the form r^j . Hence, we get

$$sr^{k+j} = (sr^k)(r^j) = (r^j)(sr^k) = s(sr^js)r^k = sr^{ij}r^k = sr^{ij+k}$$

It follows that $k + j \equiv ij + k \pmod{n}$, and thus $j \equiv ij \pmod{n}$, for every j. This is false, and so $sr^k \notin Z(G_{2n}^i)$, for all k.

Now we assume that $r^k \in Z(G_{2n}^i)$. This element commutes with, at least, all elements of the form r^j . We only need to check when it would commute with s. We get

$$sr^k = r^k \ s = s(sr^k s) = sr^{ik}$$

and thus $k \equiv ik \pmod{n}$, which implies $n \mid k(i-1)$. It follows that $\frac{n}{d}$ divides $k \cdot \frac{i-1}{d}$, but this implies that $\frac{n}{d}$ divides k. Hence, k has the form $\frac{n}{d}t$, for $t = 1, 2, \ldots, d$.

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 1 (2018), 62–67

Theorem 2.2 Let $n, i \in \mathbb{N}$, 1 < i < n, and $d = \operatorname{gcd}(i-1,n)$. Then, $\mathcal{C}(G_{2n}^i)$ is the disjoint union of d+1 complete graphs; one K_{n-d} and $\frac{n}{d}$ copies of K_d .

Proof. The vertex-set of $\mathcal{C}(G_{2n}^i)$ contains all the elements of the form sr^k , and the elements r^k , for $k \neq \frac{n}{d}t$, for $t = 1, 2, \ldots, d$.

We know that elements in $\langle r \rangle$ commute with each other. Now, none of the elements in $\langle r \rangle \setminus \langle r^{n/d} \rangle$ commutes with elements of the form sr^k , as if any did then they would commute with s, and thus would be in the center. Hence, elements in $\langle r \rangle \setminus \langle r^{n/d} \rangle$ commute only among themselves. This yields a complete graph on n - d vertices in $\mathcal{C}(G_{2n}^i)$.

Next we check when $(sr^k)(sr^j) = (sr^j)(sr^k)$ occurs. Assuming this, we get:

$$r^{ik+j} = r^{ik}r^j = (sr^ks)r^j = (sr^k)(sr^j) = (sr^j)(sr^k) = (sr^js)r^k = r^{ij}r^k = r^{ij+k}r^{ij+k} = r^{ij+k}r^{ij}$$

which implies $ik + j \equiv ij + k \pmod{n}$. We re-write this equation as $i(k - j) \equiv k - j \pmod{n}$, and notice that this equation was already solved in the proof of Lemma 2.1. It follows that k - j has the form $\frac{n}{d}t$, for t = 1, 2, ..., d. This yields $\frac{n}{d}$ complete graphs on d vertices in $\mathcal{C}(G_{2n}^i)$.

Remark 2.3 Since we know that the structure of $C(G_{2n}^i)$ is a disjoint union of complete graphs, it is now easy to find standard values associated to graphs, such as the minimum/maximum degree, diameter, chromatic number, etc. These parameters were part of the motivation given by authors in [1], [5], [6], and [7].

3 Groups of Order nq, for q Prime and $n \mid q-1$

We start by recalling a well-known construction. Consider a non-abelian group G_{pq} , of order pq, where p and q are odd primes and p < q. Since G_{pq} is non-abelian, we must have that $p \mid q - 1$, $Z(G_{pq}) = \{e\}$, and $G_{pq} \cong \mathbb{Z}_q \rtimes \mathbb{Z}_p$. Moreover, the structure of G_{pq} does not depend on ϕ (see [2], Section 5.5), and so we can present it as follows:

$$G_{pq} = \langle x, y; x^q = y^p = e, yxy^{-1} = x^z \rangle$$

where z has order p in \mathbb{Z}_q^* . With the notation of Definition 1.1, we have that $G_{pq} = G_{p,q,z}$ for all $z \neq 1$.

Instead of considering this group, we will next look at the non-abelian split metacyclic group $G_{n,q,z}$, where q is an odd prime and z has order n modulo q-1. We will denote such a group by G_{nq}^z . This is a non-abelian group, of order nq, isomorphic to $\mathbb{Z}_q \rtimes_{\phi} \mathbb{Z}_n$, for some homomorphism $\phi : \mathbb{Z}_n \to Aut(\mathbb{Z}_q)$, and has the following presentation

$$G_{nq}^{z} = \langle x, y; x^{q} = y^{n} = e, yxy^{-1} = x^{z} \rangle$$

where 1 < z < q has order n modulo q. That is, gcd(z,q) = 1, $z^n \equiv 1 \pmod{q}$, and $z^i \not\equiv 1 \pmod{q}$, for all $1 \leq i < n$. Note that this implies that n|q-1.

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 1 (2018), 62–67

Remark 3.1 In G_{nq}^z , we get

$$y^{j}xy^{-j} = y^{j-1}(yxy^{-1})y^{-j+1} = y^{j-1}(x^{z})y^{-j+1} = (y^{j-1}xy^{-j+1})^{z}$$

and so, an induction argument yields

$$y^j x y^{-j} = x^{z^j}$$

for all $j \in \mathbb{N}$. Note that the expression above also works for j = 0.

Next, we find the general structure of $\mathcal{C}(G_{nq}^z)$.

Theorem 3.2 Let $n, q, z \in \mathbb{N}$, where q is an odd prime, $n \mid q-1$, and 1 < z < q has order n modulo q. Then, $Z(G_{nq}^z) = \{e\}$ and $\mathcal{C}(G_{nq}^z)$ consists of q+1 disjoint graphs: one K_{q-1} , and q copies of K_{n-1} .

Proof. Fix the element $x^a \in G_{nq}^z$, where 0 < a < q. Clearly x^a commutes with all the elements in $\langle x \rangle$. Now we will see what other elements commute with x^a . We take y^j , where 0 < j < n, and assume x^a commutes with it. We get:

$$x^{a}y^{j} = y^{j}x^{a}$$

$$x^{a} = y^{j}x^{a}y^{-j}$$

$$x^{a} = (y^{j}xy^{-j})^{a}$$

$$x^{a} = x^{a \cdot z^{j}}$$

which implies $a \equiv a \cdot z^j \pmod{q}$. Since q is prime and 0 < a < q, we get that $z^j \equiv 1 \pmod{q}$. (mod q). However, 0 < j < n and the order of z modulo q is n, a contradiction. It follows that x^a commutes only with the elements in $\langle x \rangle$. Hence, $Z(G_{pq}^z) \cap \langle x \rangle = \{e\}$, and thus that the degree of x^a in $\mathcal{C}(G_{nq}^z)$ is q-2 (we do not count e and x^a). Moreover, the vertex-set $\langle x \rangle \setminus \{e\}$ induces a complete graph on q-1 vertices in $\mathcal{C}(G_{nq}^z)$.

Similarly, the vertex-set $\langle y \rangle \setminus \{e\}$ induces a complete graph on n-1 vertices in $\mathcal{C}(G_{ng}^z)$. These two complete graphs are disjoint from all other vertices in $\mathcal{C}(G_{ng}^z)$.

Now fix the element $x^a y^b \in G_{nq}^z$, where 0 < a < q and 0 < b < n. Assume it commutes with $x^i y^j$, where 0 < i < q and 0 < j < n. One of the products yields:

$$(x^{i}y^{j})(x^{a}y^{b}) = x^{i}(y^{j}x^{a}y^{-j})y^{j}y^{b}$$
$$= x^{i}(y^{j}xy^{-j})^{a}y^{j+b}$$
$$= x^{i}x^{a\cdot z^{j}}y^{j+b}$$
$$= x^{i+a\cdot z^{j}}y^{j+b}$$

Thus, assuming $(x^i y^j)(x^a y^b) = (x^a y^b)(x^i y^j)$ implies $x^{i+a \cdot z^j} y^{j+b} = x^{a+i \cdot z^b} y^{j+b}$. Hence, those two elements commute if and only if

$$i + a \cdot z^j \equiv a + i \cdot z^b \pmod{q}$$

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 1 (2018), 62-67

which can be re-written as

$$a(z^j - 1) \equiv i(z^b - 1) \pmod{q} \tag{1}$$

We want to solve Equation (1) for i and j, under the assumptions of a, b, q, z are given, and that 0 < a, i < q and 0 < b, j < n. However, instead of doing that, we will only count how many solutions we can find for a fixed pair a, b.

Note that none of the four factors in Equation (1) are congruent to zero modulo q, either by assumption or because the order of z modulo q is larger than both b and j. Hence, once 0 < j < n is fixed and using that q is prime, there is exactly one solution (modulo q) for i, namely

$$a(z^{j}-1)(z^{b}-1)^{-1} \equiv i \pmod{q}$$

where $(z^b - 1)^{-1}$ is the inverse of $(z^b - 1)$ modulo q.

It follows that $x^a y^b$ commutes with exactly n-1 elements of G_{nq} , one of them being itself. Moreover, none of these elements is in the center of G_{nq} because each one of them commutes with only n-1 elements. It follows that the degree of $x^a y^b$ in $\mathcal{C}(G_{nq})$ is n-2. Finally, we rewrite

Finally, we re-write

$$a(z^j - 1) \equiv i(z^b - 1) \pmod{q}$$

using that q is prime and that both $z^j - 1$ and $z^b - 1$ are not congruent to zero modulo q. We get

$$a(z^{b}-1)^{-1} \equiv i(z^{j}-1)^{-1} \pmod{q}$$

where inverses are taken modulo q. It follows that every two elements that commute with $x^a y^b$ must also commute with each other. Hence, the set of all elements commuting with $x^a y^b$ induce a complete graph in $\mathcal{C}(G_{nq})$.

Just like we had for the dihedral-like groups, now that we completely know the structure of $\mathcal{C}(G_{nq})$, it would be easy for us to find important values usually associated to graphs, such as the minimum/maximum degree, diameter, chromatic number, etc.

Acknowledgments

We thank the referee(s) for their valuable comments, they helped us improved the presentation of our results considerably.

References

- F. Ali, M. Salman, S. Huang, On the commuting graph of dihedral group. Comm. Algebra 44 (2016), 2389–2401.
- [2] D. Dummit, R. Foote, Abstract algebra, Third edition, John Wiley & Sons, Inc., Hoboken, NJ, 2004.
- [3] S.P. Humphries, D.C. Skabelund, Character Tables of Metacyclic Groups, *Glasgow Math. J.*, 57 (2015), 387–400.

- [4] S. Mac Lane, G. Birkhoff, Algebra, The Macmillan Co., New York; Collier-Macmillan Ltd., London 1967.
- [5] Z. Raza, S. Faizi, Commuting graphs of dihedral type groups. *Appl. Math. E-Notes* **13** (2013), 221–227.
- [6] T. Tamizh Chelvam, K. Selvakumar, S. Raja, Commuting graphs on dihedral group. J. Math. and Comput. Sci. 2 (2011), 402–406.
- [7] J. Vahidi, A. Asghar Talebi, The commuting graphs on groups D_{2n} and Q_n . J. Math. and Comput. Sci. 1 (2010), 123–127.

Erick Gonzalez California State University, Fresno 5245 North Backer Avenue, Fresno, CA. E-mail: erick13@mail.fresnostate.edu

Received: June 2, 2018 Accepted: December 1, 2018 Communicated by Serban Raianu