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Abstract - We define a zeroth homotopy π0(G) for a graph G. Our definition is a variation
on the usual set of connected components and has the structure of a graph, and not just a
set. We prove that our π0 is functorial and respects products: π0(G×H) ∼= π0(G)×π0(H),
a property that the set of components fails to have.
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1 Introduction

In this paper, we introduce a new definition of a zeroth homotopy set π0(G) for graphs G.
Traditionally, π0 refers to the set of connected components of a space, and it is possible to
make a similar definition for graphs. However, unlike the case of topological spaces, the set
of connected components for graphs does not respect products. Therefore we introduce
a new π0(G) which is itself a new graph, albeit a very simple one. This construction
builds on the set of connected components, but includes more structure. We prove that
our π0 construction is functorial, meaning that in addition to producing a graph π0(G)
associated to any graph, we also produce a map from π0(G) to π0(H) associated to a
graph map from G to H, and this association respects composition of graph maps. We
also show that π0(G) respects graph products.

This work grew out of a senior capstone course for undergraduate mathematics majors
at Fort Lewis College. During the semester course and continuing into the next year, we
investigated which graphs can be described as products of other graphs, a problem we
referred to as graph factorization. As our results highlight, this is a problem which cannot
be reduced to examining graphs component by component. In the course of understanding
this peculiarity, we developed conditions for when the product of connected graphs fails to
be connected, and eventually expanded these ideas to the current π0(G) definition. The
condition on connectivity of products is not new, see [6] for the original proof; but we
developed it independently, and we hope that a more categorical approach to this result
may yield further insights.

Our paper is organized as follows: Section 2 contains background definitions and no-
tation, Section 3 gives the definition of our π0(G) and shows that it defines a functor from
the graph category to itself, Section 4 shows that π0(G) respects products of connected
graphs, and Section 5 generalizes this result to disconnected graphs. We conclude with
an example of a family of non-unique graph factorizations in Section 6.
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2 Background

In this section, we give definitions and set notation that will be used later in the paper. We
will use standard graph theory terminology following [1], and category theory following
[3]. We work in the category Gph of finite undirected graphs, where we allow loops but
have at most one edge connecting two vertices. To avoid special cases, we also assume
that our graphs have no isolated vertices.

Definition 2.1 The category of graphs Gph is defined as follows:

• An object is a graph G, consisting of a finite set of vertices V (G) = {vi} and a
finite set E(G) of edges connecting them, where each edge is given by an unordered
set of two vertices. We assume that every vertex is connected to at least one other
vertex (possibly itself). If two vertices are connected by an edge, we will use notation
v1 v2 ∈ E(G), or just v1 v2 if the parent graph is clear.

• An arrow in the category Gph is a graph morphism f : G → H. Specifically,
this is defined by a set map f : V (G) → V (H) such that if v1 v2 ∈ E(G) then
f(v1) f(v2) ∈ E(H).

We will work in this category throughout this paper, and assume that “graph” always
refers to an object in Gph. In particular, all of our graphs will have finite vertex (and
hence edge) sets.

Definition 2.2 Two graphs G and H are isomorphic when there are graph morphisms
ϕ : G → H and ψ : H → G such that ϕ ◦ ψ and ψ ◦ ϕ are the identity maps on their
respective domains. In this case, we will use notation G ∼= H and consider the two
isomorphic graphs to be fairly interchangable.

Definition 2.3 [2, 5] Let G,H be graphs. The (categorical) product graph G×H (also
called the tensor or Kronecker product) is defined by:

• A vertex is a pair (v, w) where v ∈ V (G) and w ∈ V (H).

• There is an edge (v1, w1) (v2, w2) ∈ E(G × H) whenever v1 v2 ∈ E(G) and
w1 w2 ∈ E(H).

Example 2.4 Let L be given by a single looped vertex x, and H = K2 be the graph with
two vertices {0, 1} connected by an edge:

x

L

0 1

H
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Then the products are illustrated below:

L× L
(x, x)

(x, 0) (x, 1)

L×H

(0, 0) (0, 1)

(1, 0) (1, 1)

H ×H

Even in this simple example, we see that we have a product of two connected graphs
which is disconnected.

Example 2.5 Let G be the graph on two adjacent looped vertices: V (G) = {a, b} and
E(G) = {a a, b b, a b}. Let H = K2 with V (H) = {0, 1} and E(H) = {0 1}. Then
G×H is isomorphic to the cyclic graph C4:

0 1

a

b

(a, 0) (a, 1)

(b, 0) (b, 1)

G

H

G×H

Definition 2.6 If we have a graph G such that G ∼= H ×K, we say that H and K are
factors of the graph G.

Thus the above examples show that the single loop graph L is a factor of every graph,
and that two disjoint copies of K2 can be factored as K2 ×K2.

Other concepts from graph theory we will be using are included here for completeness:

Definition 2.7 A walk in a graph G is a list of vertices v0v1v2 . . . vn such that vi vi+1 ∈
E(G). A closed walk is a walk where v0 = vn. The concatenation of two walks v0v1 . . . vn
and w0w1 . . . wm is defined by v0v1 . . . vnw1 . . . wm when vn = w0.

Definition 2.8 A graph G is bipartite if V (G) can be written as a disjoint union V (G) =
U ∪W , where no vertices in U are connected to each other, and no vertices in W are
connected to each other.

3 Defining a Zeroth Homotopy for Graphs

In this section, we give a definition of π0(G) for any graph G ∈ Gph, and show that this
defines a functor Gph→ Gph.

We begin with the following definition.
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Definition 3.1 Let G be a graph, and v, w ∈ V (G). Define v ∼ w if there exists a walk
of even length from v to w in G.

Lemma 3.2 The relation ∼ of Definition 3.1 is an equivalence relation on V (G).

Proof. We check the following:
Reflexive: Given v ∈ V (G), there is a length 0 walk from v to v, which is of even length.
Symmetric: If v ∼ w, then there exists a walk of length 2` from v to w. Then writing the
vertices of this walk in reverse order gives a walk of length 2` from w to v.
Transitive: If u ∼ v and v ∼ w then there is a walk of length 2` from u to v and a walk
of length 2n from v to w, and these walks may be concatenated to give a walk of 2`+ 2n
from x to z. �

In order to define the graph π0(G), we need the following result.

Lemma 3.3 If v ∼ w and there is an odd length walk from w to x, then there is also an
odd length walk from v to x.

Proof. If v ∼ w, then there is a walk of length 2` from v to w. Additionally, there is
a walk of length 2n + 1 from w to x. Then by the concatenation that gives transitivity,
there is a walk of length 2` + 2n + 1 = 2(` + n) + 1. Therefore, there is an odd length
walk from v to x. �

Definition 3.4 We define the graph π0(G) as follows:
The vertex set V (π0(G))) is the set of equivalence classes

[v] = {w : w ∼ v} for v, w ∈ V (G).

There is an edge between vertices [v], [w] if there exists an odd length walk between v, w ∈
V (G). Lemma 3.3 shows that this is well-defined.

Example 3.5 Suppose that G = C3 with V (G) = {1, 2, 3} and E(G) = {1 2, 2 3, 3 1}.
Then every vertex has an even length walk to every other, so π0(G) has only one vertex
[1] = [2] = [3]; and every vertex has an odd length walk to every other, so [1] [1] ∈
E(π0(G)).

G = π0(G) =

Example 3.6 Suppose that H = C4 with V (H) = {1, 2, 3, 4} and
E(H) = {1 2, 2 3, 3 4, 4 1}. Then 1 ∼ 3 and 2 ∼ 4; so V (π0(H)) = {[1], [2]}. There
is an odd length walk from 1 to 2 and so [1] [2] ∈ E(π0(H)). There are no odd length
walks between any vertex and itself or any other equivalent vertex, so there are no loops
in E(π0(H)). So π0(H) ∼= K2.
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4 3

1 2

H

π0(H) =

[1]

[2]

Example 3.7 Suppose that J is the graph drawn below. We see that there are even
length walks between ai and aj, and between bi and bj, but not between ai and bj. So
V (π0(J)) = {[a1], [b1]}. And there is an odd length walk between a1 and b1, but not
between any ai and aj, or between any bi and bj. Thus [a1] [b1] ∈ E(π0(J)) is the only
edge in π0(J), and π0(J) ∼= K2.

J =

a1 a2 a3

b1 b2 b3 b4

π0(J) =

[b1]

[a1]

Next, we show that π0 defines a functor from the category Gph to itself.

Definition 3.8 [3] A functor F : Gph→ Gph is defined by:

• for any graph G ∈ Gph, F(G) defines a graph in Gph;

• for any graph homomorphism f : G → H, there is a graph homomorphsim F(f) :
F(G)→ F(H) such that

– F(idG) = idF(G) where idG denotes the identity map;

– if f : G→ H and g : H → K, then F(g ◦ f) = F(g) ◦ F(f).

We have already shown that π0(G) defines a graph in Gph. So we need to consider
graph morphisms.

Proposition 3.9 If f : G → H is a graph homomorphism, then there is a graph homo-
morphism f0 : π0(G)→ π0(H) defined by f0([x]) = [f(x)]

Proof. We first show that f0 is well-defined. Let x, y ∈ V (G) and suppose [x] = [y].
Then there exists an even walk from x to y defined by xv1v2 . . . vn−1y. Because f is a
graph homomorphism, f(x)f(v1)f(v2) . . . f(vn−1)f(y) defines an even walk from f(x) to
f(y). Therefore [f(x)] = [f(y)].

Now we show that f0 is a graph homomorphism. Suppose that [x] [y] ∈ E(π0(G)).
This means that there is an odd walk from x to y in G; applying f to each vertex of the
walk gives an odd walk from f(x) to f(y), so [f(x)] [f(y)] ∈ E(π0(H)).

�

Proposition 3.10 π0 defines a functor from Gph to Gph.
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Proof. If id is the identity map G → G, then for x ∈ V (G), we have id(x) = x
and so id0 : π0(G) → π0(G) is defined by id0([x]) = [id(x)] = [x], which is the identity
map on π0(G). Next, we check that π0 respects composition. We want to show that
(g ◦ f)0 = g0 ◦ f0: if x ∈ V (G), (g ◦ f)0(x) = [(g ◦ f)(x))] = [g(f(x))], while g0 ◦ f0 =
g0([f(x)]) = [g(f(x))]. Thus π0 defines a functor.

�

4 Products of Connected Graphs

We will prove that the π0 construction respects products. In this section we consider
connected graphs; in the following section we will extend this result to more general
graphs.

Theorem 4.1 For any connected graphs G,H ∈ Gph, we have

π0(G×H) ∼= π0(G)× π0(H).

It turns out that for connected graphs, π0 detects whether the graph is bipartite or
not. So our strategy for proving Theorem 4.1 will be to work through various cases of
bipartite and non-bipartite graphs. We begin with the following result about bipartite
graphs. This result is standard in many graph theory sources, but we present a proof here
for completeness and to introduce ideas we will be using to prove Theorem 4.1.

Theorem 4.2 [1] Let G ∈ Gph be a connected graph. Then the following are equivalent:

1. G is bipartite.

2. G does not contain an odd closed walk.

3. For any two vertices v, w of G, there is either an odd or even length walk connecting
them, but not both.

Proof.
(1)⇒ (2): Suppose that G is bipartite. Then V (G) is the disjoint union of two subsets

U and W such that no vertices of U are connected to each other, and no vertices of W are
connected to each other. Therefore any walk in G must alternate between vertices of U
and vertices of W , and hence any closed walk which begins and ends at the same vertex
must be of even length.

(2)⇒ (3) : We show the contrapositive. If there are two vertices v, w ∈ V (G) with no
walk connecting them, then G is not connected. If there are two vertices v, w of G such
that there is both an odd length and even length walk from v to w, then concatenating
these walks gives an odd length walk from v to v, and hence an odd closed walk.

(3)⇒ (1): Select a vertex x ∈ V (G). We can partition V (G) into two sets U,W where
U(G) = {v ∈ G | there is an even walk from x} and
W (G) = {v ∈ G | there is an odd walk from x}. The hypothesis of (3) shows that these
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sets are disjoint, and the fact that G is connected ensures that every vertex has a walk
to x and hence that the union of these sets is all of V (G). If v1, v2 ∈ U(G), there cannot
be an edge from v1 to v2, since this would result in both an even and odd walk from x to
v1: the even walk is assumed, and the odd walk would be the concatenation of the even
walk to v2 and the edge to v1. Similarly, no vertices of U(G) can be connected.

�

Observation 4.3 We have actually proved a stronger relationship between conditions
(1) and (3) above: we have shown that if we choose any vertex x ∈ V (G), then the
bipartite partition is exactly the two sets of vertices with odd and even walks from x.

We will also use the following form of this result:

Corollary 4.4 Let G be a connected graph. Then the following are equivalent:

1. G is not bipartite.

2. G contains an odd closed walk.

3. For any two vertices v, w of G, there is both an odd and even length walk connecting
them.

We use these results to show that if G is connected, there are only two possible options
for the π0(G) graph.

Proposition 4.5 If a graph G ∈ Gph is connected and bipartite, then

π0(G) ∼= K2 =
A B

where the equivalence classes A and B coincide with the partition of the bipartite graph
into disjoint subsets of vertices.

Proof. Since G is bipartite, V (G) is the disjoint union of two subsets A(G) and B(G)
such that no vertices from A are connected to each other, and no vertices from B are
connected to each other. Choose a vertex a ∈ A(G). By Condition (3) of Theorem 4.2,
for each vertex v ∈ V (G), either there is an even walk from a or an odd walk from a,
but not both. Let b be a vertex connected to a (recall that we are not allowing isolated
vertices, so such a b exists). Then b ∈ B(G).

If v has an even walk from a, then [v] = [a]. If a vertex v has an odd walk from a,
then the concatenation of the walk from v to a with the edge from a to b gives an even
walk from v to b, and so [v] = [b]. Thus V (π0(G)) = {[a], [b]}, and these are exactly the
subsets A(G) and B(G). The edge from a to b provides an edge from [a] to [b] in π0(G). If
v, w are both in A(G), then conditon (2) disallows an odd length walk connecting them,
and so there is no loop from [a] to [a] in π0(G). Similarly, there is no loop from [b] to [b].
Thus π0(G) is the graph above.

�
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Proposition 4.6 If H is a connected graph which is not bipartite, then

π0(H) ∼=

Proof. If G is connected, then there exists a walk connecting any two vertices. By
Corollary 4.4, if G is not bipartite then there is both an even and an odd walk between
every pair of vertices v, w. Thus, [v] = [w] and π0(H) consists of a single vertex, and
there is an edge from [v] to [w] in π0(H). �

Observation 4.7 To prove Theorem 4.1, we have three cases to consider: the product
of two bipartite graphs, the product of two non-bipartite graphs, and the product of a
bipartite graph with a non-bipartite graph.

We will use the following fact about walks in product graphs for all of our cases.

Proposition 4.8 There is an even [resp. odd] length walk from (v, w) to (v′, w′) in G×H
if and only if there is an even [resp. odd] length walk from v to v′ in G and an even [resp.
odd] length walk w to w′ in H.

Proof. A walk in G×H is given by a sequence of vertices

(v0, w0)(v1, w1)(v2, w2) . . . (vn, wn)

where each successive pair is connected in G×H. By the definition of the product graph,
(vi, wi) is connected to (vi+1, wi+1) if and only if vi and vi+1 are connected in G, and
(wi) and (wi+1) are connected in H. Thus a walk in G × H corresponds exactly to two
simultaneous walks in G and H of equal length, and we see that an even [resp. odd]
length walk in G×H gives even [odd] length walks in each of G and H.

Conversely, suppose that there is a walk of length 2n from v to v′ in G, and a walk
of length 2m from w to w′ in H. If n = m we can combine the two walks to get a walk
from (v, w) to (v′, w′). Now suppose n 6= m, and suppose without loss of generality that
n < m. Then we can extend the walk v = v0v1v, . . . , v2n−1v2n = v′ to be a walk of length
2m by adding v2n−1v2n to the end an appropriate number of times. A similar argument
works for a pair of odd length walks. �

Example 4.9 Suppose that G = K2 with V (G) = {A,B} and E(G) = {A B}, and
H = C4 with V (H) = {1, 2, 3, 4} and E(H) = {1 2, 2 3, 3 4, 4 1}.

Let α be the length 1 walk AB in G, and β be the length 3 walk 1234 in H. In order
to define a walk in G×H, we extend α to be the walk α′ = ABAB:

A B

G

α′

4 3

1 2

H

β
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Then we can combine α′ and β to give a walk in G×H defined by A1B2A3B4:

A1 B1

A2 B2

A3 B3

A4 B4

G×H

We now consider the following cases.

Proposition 4.10 If G,H are connected non-bipartite graphs, then G×H is a connected
non-bipartite graph.

Proof. Suppose G,H are connected non-bipartite graphs. Then for any vertices v1, v2
in V (G) and u1, u2 in V (H), there is both an odd and even length walk from v1 to v2
and an even and an odd walk from u1 to u2. Then there are both even and odd length
walks (v1, u1) to (v2, u2) in G×H by Proposition 4.8. Thus G×H is connected and by
Corollary 4.4, G×H is non-bipartite.

�

Corollary 4.11 If G and H are connected non-bipartite graphs, then π0(G) × π0(H) ∼=
π0(G×H).

Proof. By Proposition 4.10, G×H is also connected and non-bipartite. So by Proposition
4.6, all the π0 graphs consist of a single looped vertex. As shown in Example 2.4, the
product of two looped vertex graphs is another looped vertex graph.

�

Example 4.12 Let G be the graph on two adjacent vertices, one of which has a loop:
V (G) = {a, b} and E(G) = {a a, a b}. Then G is not bipartite, and there is both
an even and odd length walk between every pair of vertices; so π0(G) is a single looped
vertex. Now G×G is drawn below, and we see that there is also an even and odd length
walk between every pair of vertices in G×G, and so π0(G×G) ∼= π0(G)× π0(G).

a b

a

b

(a, a) (a, b)

(b, a) (b, b)

G

G

G×G
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Proposition 4.13 If G is a connected bipartite graph and H is a connected non-bipartite
graph, then G×H is a connected bipartite graph.

Proof.
Suppose that G is bipartite and H is not. To see that G×H is connected, let (v, w)

and (v′, w′) be vertices from G × H. Since G is connected, there is a walk from v to v′

in G. Since H is connected and non-bipartite, there is both an even and odd length walk
from w to w′ in H. Thus pairing the walk in G with the walk of the same parity from H
gives a walk from (v, w) to (v′, w′) in G×H.

To see that G × H is bipartite, we observe that if G × H were non-bipartite, then
there would be both odd and even length walks from (v, w) to (v′, w′) and hence by
Proposition 4.8, both even and odd length walks in G from v to v′, contradicting the
bipartite condition of Proposition 4.2.

�

Corollary 4.14 If G is a connected bipartite graph and H is a connected non-bipartite
graph, then π0(G)× π0(H) ∼= π0(G×H).

Proof. By Proposition 4.13, G × H is connected and bipartite. So by Proposition 4.5
and 4.6, we have π0(G) = π0(G×H) ∼= K2, and π0(H) ∼= L where L denotes the looped
vertex. As shown in Example 2.4, the product K2 × L is isomorphic to K2.

�

Example 4.15 Let G = K2 with V (G) = {A,B} and E(G) = {A B}. Let H = C3

with V (H) = {1, 2, 3} and E(H) = {1 2, 2 3, 3 1}.

A B

G

23

1

H

So π0(G) ∼= K2 and π0(H) ∼= L where L is a single looped vertex. Then G × H is
isomorphic to the cyclic graph C6:

A1 B1

A2 B2

A3 B3

G×H
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and π0(G×H) has two vertices, [A] = [A1] = [A2] = [A3] and [B] = [B1] = [B2] = [B3],
and an edge connecting them: [A] [B] ∈ π0(G ×H). So π0(G ×H) ∼= K2

∼= K2 × L ∼=
π0(G)× π0(H).

Proposition 4.16 If G,H are connected bipartite graphs, then G×H is a disconnected
graph with two components, each of which is bipartite.

Proof. First, observe that G×H is bipartite: if not, then G×H would contain an odd
closed walk, which would correspond to odd closed walks in G and H by Proposition 4.8,
a contradiction of Proposition 4.2.

To see that there are exactly two components, recall from Observation 4.3 that if we
fix x ∈ V (G) then the bipartite partition of V (G) is exactly given by the partition of
vertices into U,W where

U(G) = {v ∈ G | ∃ an even walk from v to x}

and
W (G) = {v ∈ G | ∃ an odd walk from v to x}.

Similarly, for y ∈ V (H), the bipartite partition of V (H) is given by U(H) and W (H),
those vertices which are an even and odd length walk from y. Now (v, w) is connected to
(x, y) in G×H if and only if there are walks x to v in G, and y to w in H, of the same
parity. Thus the component of (x, y) in G×H is exactly [U(G)×U(H)]∪[W (G)×W (H)].
The complement is [U(G)×W (H)]∪ [W (G)×U(H)], which will be a second component,
since it would have the same form for a choice of x in the other partition subset. Since
the entire graph is bipartite, each component must also be bipartite.

�

Corollary 4.17 If G and H are connected bipartite graphs then π0(G)×π0(H) ∼= π0(G×
H).

Proof. By Proposition 4.16, G×H consists of two components, each given by a connected
bipartite graph. So by Proposition 4.5 , we have π0(G) ∼= π0(H) ∼= K2, and π0(G × H)
given by two copies of K2. As shown in Example 2.4, the product of K2 ×K2 is exactly
two copies of K2.

�

Example 4.18 Suppose that G = K2 with V (G) = {A,B} and E(G) = {A B}, and
H = C4 with V (H) = {1, 2, 3, 4} and E(H) = {1 2, 2 3, 3 4, 4 1}.

A B

G

4 3

1 2

H
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So π0(G) ∼= π0(H) ∼= K2. Now G×H is isomoprhic to the disjoint union of two copies of
C4:

A1 B1

A2 B2

A3 B3

A4 B4

G×H

So π0(G×H) ∼= K2 ×K2
∼= π0(G)× π0(H).

This completes the proof of Theorem 4.1. We have also recovered the following result.

Corollary 4.19 [6] Suppose G and H are connected. Then G×H is disconnected if and
only if both of the graphs G and H are bipartite.

Observation 4.20 These results have profound implications for the question of factoring
graphs as in Definition 2.6, particularly the case of two bipartite graphs of Corollary 4.17.
We have shown that it is NOT sufficient to look for factors of components of the graph,
working on each component seperately; instead, there may be cases where two components
need to be paired and created as products of connected graphs together. In Example 4.18,
we would need to look at both copies of C4 together in order to find the given factors.
This complicates the question of finding factors for graphs considerably.

5 Disconnected Graphs

In this section, we generalize to disconnected graphs. In order to do this, we will work
with the categorical coproduct or disjoint union graph G+H of graphs G,H, which has
vertices V (G) ∪ V (H) and edges E(G) ∪ E(H) as defined in [1].

We first check that the coproduct distributes over the product.

Proposition 5.1 For any graphs G1, G2 and H, we have (G1+G2)×H ∼= G1×H+G2×H

Proof.
If (v, w) ∈ V (G1×H) , then (v, w) also defines a vertex in V ((G1 +G2)×H). Define

a map ϕ : (G1 + G2) × H → G1 × H + G2 × H by ϕ(v, w) = (v, w). This is a graph
homomorphism since if (v, w) (v′, w′) in G1×H, then v v′ ∈ E(G1) and hence in G1+G2,
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and w w′ ∈ E(H). Again, it is easily checked that this is injective and surjective, and
therefore defines a graph isomoprhism. �

Example 5.2

G × H1( )H1 H2+ ∼= (G×H1) (G×H2)+

Next, we show that π0 respects the coproduct.

Lemma 5.3 For any graphs G,H, π0(G+H) ∼= π0(G) + π0(H).

Proof. We can define an isomorphism ϕ : π0(G)+π0(H)→ π0(G+H). Given v ∈ V (G),
v also defines a vertex in G + H, so we define ϕ[v] = [v]. This is well-defined, since if
[v] = [v′] in π0(G+H) then there is an even length walk from v to v′ in G+H; but since
G+H has no edges connecting vertices of G to those of H, this walk must lie entirely in
G, and so [v] = [v′] ∈ V (π0(G)). Similarly we define ϕ[w] = [w] for w ∈ V (H). This is
a graph homomorphism, since if [v] [v′] ∈ E(π0(G) + π0(H)), there exists an odd length
walk from v to v′ in G (or in H), and hence from v to v′ in G+H. It is easy to see that
this map is surjective and injective, and so defines an isomorphism of graphs. �

The previous two results give the following.

Corollary 5.4 For a disconnected graph G with components G1, G2 and any graph H,

π0(G1 +G2)× π0(H) ∼= [π0(G1)× π0(H)] + [π0(G2)× π0(H))]

A straightforward induction argument extends this to multiple components. Thus we
can extend Theorem 4.1 to arbitrary graphs.

Theorem 5.5 For any graphs G,H ∈ Gph, we have

π0(G×H) ∼= π0(G)× π0(H).

6 Factoring Graphs

Our original motivation for studying π0(G) was the more general question of finding
factors of graphs as in Definition 2.6. We observed earlier that our results prove that the
problem of finding factors can not be studied component-wise, as it may be necessary to
pair up components when looking for graph factors.

Additionally, our results have produced the following example which shows the failure
of unique graph factors.

the pump journal of undergraduate research 3 (2020), 37–51 49



Example 6.1 Let G be the disconnected graph given by two looped vertices L+L, and
H = K2 be the graph with two vertices connected by an edge.

yx

G

0 1

H

Then G×H is isomoprhic to H ×H:

(x, 0) (x, 1)

(y, 0) (y, 1)

G×H

(0, 0) (0, 1)

(1, 0) (1, 1)

H ×H

We show that this example represents a more general scenario.

Proposition 6.2 Let G be the disconnected graph given by two looped vertices, and H ∼=
K2 as in Example 6.1. Then for any connected graph J ∈ Gph, π0(J) ∼= K2 if and only if
G× J ∼= H × J .

Proof. First, G × J ∼= Jx + Jy for any graph J , where Jx denotes the the subgraph
of vertices (v, x) and Jy those of vertices (v, y), and both Jx and Jy are isomorphic to
J . Now suppose that π0(J) = K2, so J is a bipartite graph with vertices given by the
disjoint union of vertex subsets U = {ui} and V = {vi}. Then the vertices of H × J are
given by U0 = {(ui, 0)}, U1 = {(ui, 1), V0 = {(vi, 0)} and V1 = {(vi, 1)}. Since there are
no edges connecting ui uj or vi vj in J , the graph H × J can be separated into disjoint
components given by U0∪V1 and U1∪V0. Since each edge in J from ui vj corresponds to
an edge (ui, 0) (vj, 1) and an edge (ui, 1) (vj, 0), each of these components is isomorphic
to a copy of J . Thus H × J is also isomorphic to J + J .

Conversely, suppose that J is not bipartite. Then π0(J) ∼= L where L denotes the single
looped vertex, and π0(G × J) ∼= π0(J + J) ∼= L + L. On the other hand, π0(H × J) ∼=
π0(H)× π0(J) ∼= K2 × L ∼= K2. So G× J is not isomorphic to H × J . �

Open Problem 6.3 We leave the reader with the following question to ponder: can we
find other classes of graphs which can be factored in multiple ways?
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