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Abstract - BitTorrent is a popular file sharing protocol in which a user downloads a file
from a large collection of seeders, each of which has the file. The user downloads from b of
these seeders, but repeatedly drops its worst connection and establishes a new one in search
of the best b connections. In this paper we model the BitTorrent protocol using a modified
secretary problem, and in doing so find precise stopping times for an arbitrary b. We show
that every b gives the same success probability, and that this probability asymptotically
approaches 1/e. We then extend this result to the case of securing a connection with c of
the top b peers.
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1 Introduction

BitTorrent is one of the most popular file sharing protocols available en masse. In fact,
it can currently account for 3.35% of worldwide bandwidth usage [12]. In this paper we
describe its function and prove new results on the optimization of its “tit for tat” proce-
dure, which we will soon describe. In particular, we explore how this tit for tat system of
peer acquisition is modeled by a modified version of the classic secretary problem.

The BitTorrent protocol, pioneered and implemented by Bram Cohen in the early
2000’s, is a peer-to-peer (P2P) file sharing protocol. By definition, P2P protocols ditch the
traditional client-server model used by the majority of the internet in order to maximize
download speeds, hence minimizing download times. In the BitTorrent protocol, a user
downloads a .torrent file which contains a list of trackers, hash numbers, block sizes, the
number of blocks, and other necessary information about the file to be downloaded.

When a user decides to upload a file using BitTorrent, the file is broken up into many
(typically) standard-size blocks of 256 kB; these blocks are the same for all users. The user
would then distribute the .torrent file over the internet to those who wish to download it,
and also announce the presence to a chosen tracker. The tracker is simply a server whose
purpose is to keep track of all the users in a given swarm (the name given to a group of
users downloading/uploading a single file). As users arrive, the initial seeder (the user
who uploaded the file) begins to distribute the file to those requesting it, and will continue
to do so indefinitely.
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Users trying to download this file are known as leechers. They download the .torrent
file, and then use the contents contained therein to find the proper tracker and join the
swarm. Once in the swarm, a single leecher requests specific blocks from its peers. Those
providing this leecher with blocks of the file are known as seeders. Once a leecher has a
complete block, it too can become a seeder, simultaneously seeding and leeching.

It is at this point where the tit for tat protocol takes place. BitTorrent clients (the
programs that run the BitTorrent protocol for users) are designed to reciprocate what
they receive from their peers. That is, if a peer uploads at the maximum rate to you, or
unchokes you, then you upload at your maximum rate to the peer, unchoking that peer.
Similarly, if a peer chokes you, or stops uploading to you, you reciprocate by choking
that peer. It would be easy to imagine a situation in which nobody unchokes anyone else,
creating a stalemate. Luckily BitTorrent solves this problem by using what is called an
optimistic unchoke, where you unchoke a peer from the swarm and hope that the peer
reciprocates.

Each peer in the swarm generally maintains a relationship with (a standard) four
other peers simultaneously. Ideally, these are the four best peers (those that upload at
the highest rate). However, there is often a better peer remaining in the swarm. In an
attempt to find that better peer, a user’s client will reserve one of its four connections
as its optimistic unchoke connection. In other words, three of its connections will be
maintained, but every thirty seconds the fourth connection will be choked and another
one will be made and unchoked with a random peer from the swarm [2]; for the purposes
of this paper we will assume that each new connection is with a peer that has not been
seen before (a multitude of other factors determines the extent to which this actually
happens in practice). The hope is that this new peer will also unchoke the user. If it
turns out one of these optimistically unchoked peers is better than one of the user’s three
maintained connections, then one of those three connections will become the connection
that is choked and transferred to another random peer. It is important to note that it
is impossible to know if a random peer from the swarm will be better than a current
peer without first establishing a connection. Furthermore, it is impossible to make a new
connection without dropping a current one.

In short, the goal of a BitTorrent client is to find the four best peers for a given user,
and does so by repeatedly swapping its worst peer for a new one, slowly searching through
the typically-large swarm; in 2010, the average swarm size of the most popular torrents
was 691.14 [8]. Since there is typically no good way to know whether your current set of
clients is optimal, a BitTorrent client will typically never stop swapping. In this paper,
though, we analyze when one should stop the search to maximize the chance that they
have collected the top four.

1.1 Other Considerations

Part of the BitTorrent protocol is the selection of which blocks to request from peers first.
The standard protocol is called “rarest first,” whereby clients request from their peers
the least prevalent block within their connected peer list. In other words, the goal is to
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minimize the standard deviation of all blocks among the swarm in order to maximize the
probability that a given peer will have the block needed by a particular client.

While this is an issue, it will not be considered in the scope of this paper.

2 The Classic Secretary Problem and its Generalizations

The rules for the classic secretary problem are as follows [3]:

1. A collection of applicants apply for one secretarial position.

2. There are n applicants and n is known.

3. The applicants can be linearly ranked from best to worst without ties.

4. You interview the applicants in a random order, with each of the n! orderings being
equally likely.

5. At the conclusion of each interview, you must either offer the applicant the job and
end the search, or reject the candidate and call in the next.

6. The decision to accept or reject an applicant must be based only on the relative
ranks of the applicants interviewed thus far.

7. Once a candidate is rejected, they cannot later be recalled.

8. The objective is to select the best applicant.

So, the goal of this problem, and the definition of success, is to select the objectively
best applicant. The challenge is, of course, to identify the proper applicant. As it turns
out, the best way to do this is to rely on probability.

To begin, consider the set of applicants {x1, x2, . . . , xn} where each index represents
the order in which the applicant is interviewed. As each applicant is interviewed, the
interviewer has a relative ranking of the current applicant as compared to the previous
candidates. So, if applicant xj receives the best relative ranking (of the previously inter-
viewed applicants), then the probability that applicant xj is the objectively best applicant
is the probability that the best candidate is among the first j applicants. That is, the
probability applicant xj is the best is simply j/n. Note that as j → n the probability
applicant xj is the objectively best applicant, given that they are the relatively best appli-
cant, approaches 1. As such, as j → n, the probability that the objectively best applicant
is after applicant xj significantly decreases, meaning that the interviewer risks more and
more by not selecting applicant xj.

As such, there must be a threshold T such that maximizes the probability that the
next relatively best applicant is the objectively best candidate. That is, the optimal
strategy is for the interviewer to reject the first T − 1 applicants and then select the next
relatively best applicant. It turns out that the optimal threshold value is T = dn/ee. In
addition, the probability of success by using this strategy is approximately e−1 ≈ 37%.
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These ratios arrive from the following formula. Let p1n(T ) be the probability of success
with threshold T given n applicants. Then,

p1n(T ) =


1
n

, T = 1

1
n

n∑
j=T

T − 1

j − 1
, T ∈ {2, 3, ..., n}. (1)

Also, if Tn is the optimal threshold (maximizing p1n(T )) for a particular n, then [3]

lim
n→∞

Tn

n
=

1

e
.

Of note in (1) is the term T−1
j−1 . This term measures the probability that, given the

best applicant is xj, that the best among the first j − 1 applicants (the best one which
precedes xj) was one of the first T − 1 applicants (implying that this next-best was not
selected, and also that nothing before xj will end the search). That is, the strategy with
threshold T will successfully select the best candidate if and only if this condition is met.

Generalizations

There are many different generalizations to the classic secretary problem that have been
studied. Smith [17] studied the variant in which a secretary, when accepted, has a proba-
bility of not being available and will therefore must be passed over. Yang [21] allowed the
manager to attempt to hire an applicant that they have already dismissed; however, with
a certain probability this candidate will no longer be available. Petrucelli [13] studied
what happens when these two situations happen simultaneously.

Rubin and Samuels [15] considered the “finite memory” variant, where the manager
may only remember the previous candidate’s abilities.

Gianini and Samuels [5] introduced an infinite version of the problem where infinitely
many rankable candidates (rank 1 is the best) arrive at times which are i.i.d., uniform
on (0, 1). The goal is then to minimize the mean of a prescribed increasing function.
Gianini [4] and Lorenzen [10] showed that this problem is the limit of corresponding finite
problems.

Other generalizations involve the expected rank of the chosen candidate [1], limited
recall of previous candidates [7], an oberservation cost for each additional interview [9],
and a game version in which one player gets some control on the order in which the
applicants are interviewed [6].

A final variant that has been studied in which a single candidate is hired was considered
by Smith and Deely [18]. In this paper, they allow the manager to at any point hire one of
the last m applicants. This in some ways mirrors our own situation in which we will allow
the “manager” to maintain a “pool” of potential candidates, who have been interviewed
but not yet fired.

In our paper, though, we study the situation where one wants to select more than one
“secretary.” This has also been studied before, but in the literature the set-up is again
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that applicants are interviewed one at a time, and at the end of the interview must either
be hired or not hired. In Nikolaev [11], the task was to hire the best two applicants; in
Tamaki [19], it was to hire at least one of the top two. In Rose [14], the problem of filling
two positions, P1 and P2, was discussed. Here, applicants are considered one at a time,
and at the end of the interview must either be offered the top position or the second
position, or be dismissed without an offer. Tamaki [20] then extended this to case where
m positions need to be staffed, in order. But still, they enter sequentially, and one at a
time are offered a position or dismissed.

In the below we ask what happens when you want to hire the top b secretaries, in
no particular order, and you may keep a pool of b candidates at a time which you have
interviewed but have not yet been fired.

3 Applying the Secretary Problem to BitTorrent Protocol

In the case of BitTorrent protocol, we are not interested in the single best peer, but in
the four best peers. In addition, there will continuously be three active connections and a
fourth used for optimistic unchoking. We term these four connections as the “bank.” We
will now examine the “standard” BitTorrent protocol bank size of four and determine the
probability of success in selecting the top four peers. We will then generalize the bank
size, and finally generalize the success conditions.

3.1 The Setup

First, some definitions. Let:

• n be the total number of peers in the swarm.

• P be the set of all peers, and pi be the ith objectively ranked peer, for i = 1, 2, ..., n,
where a lower value means a better rank.

• xj be the peer that arrives in location j, regardless of objective rank, for
j = 1, 2, ..., n.

• b be the bank size.

• K be the set of the best b peers, and ki be its elements for i = 1, 2, ..., b such that any
ki is the ith element of K to be selected, not necessarily its objective rank. Note that
the objective rank for all k ∈ K is better than pi ∈ P for i = (b + 1), (b + 2), ..., n.
Furthermore, note that kb is the final peer from K to be selected.

• T be the threshold.

• `0 be the bth best peer that arrives prior to kb.
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3.2 The Rules

In order to apply the secretary problem solution to BitTorrent, we must first translate
the rules of the secretary problem to be in terms of BitTorrent protocol.

1. There are four connections available which constitute a “bank.” That is, at all
times, other than transition periods, four connections must be maintained.

2. There are n peers in the swarm; n is known and n ≥ 4.

3. It is assumed that you can rank the peers linearly from best to worst without ties.

4. Connections with peers are tested sequentially in a random order with each of the
n! orderings being equally likely.

5. As each connection is tested, you must either accept it as the last of the top four
connections and end the search, accept it as one of the top three current connections
and drop your current worst connection, or drop it as your worst connection and
attempt the next connection, if any exist.

6. The decision to accept or reject a connection must be based only on the relative
ranks of the connections tested so far.

7. A connection, once rejected, cannot later be re-established.

8. The objective is to select the four best peers.

Clearly the setup for this problem is very similar to the secretary problem. However,
there are some important subtleties in the procedure to note.

Notice that, regardless of their objective ranks, the first four peers to arrive are the
first four peers in the bank. Then, until the xT−1 arrives, continue to drop the worst
connection in the bank and establish a new connection. Once the jth connection is made,
for j ≥ T , if peer xj is the bth best peer to arrive, accept xj as the final connection in the
bank and stop the search.

3.3 Win Conditions

In order for this process to succeed—that is, for all k ∈ K to be selected—the three
following conditions must be met. The converse also holds too: if these conditions are
met, then the process will succeed.

1. Exactly (b− 1) peers from K must arrive in the first (T − 1) peers.

2. kb arrives in position j, for some j ≥ T . Say, kb = xj.

3. `0 must arrive in the first (T − 1) peers.
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We justify these now, with a particular emphasis on the case b = 4.

—Condition 1—

First, exactly (b − 1) peers from K must arrive in the first (T − 1) peers. For the
purpose of this demonstration, let b = 4. Clearly the process fails if all b peers from
K arrive before the threshold, because then the worst such connection will be dropped
before the threshold and will never be picked back up again. So, consider the case where
only 2 members of K arrive before the threshold, T :

1 2 3 ... (T − 1) T k3k1 ... k2 ... kb

Figure 1: Only 2 members of K arrive before T .

The blue dots represent all peers that arrive prior to the threshold, the best 4 of which
(because b = 4) will remain in the bank into the green side. The green dots represent the
peers considered as candidates for stopping the search. Recall that the process will stop
once the relatively best peer (as compared to those that have been discarded) is found
after the threshold. Thus, in the case where only 2 members of K arrive prior to the
threshold, it will never be the case that kb is found. Similarly, this can easily be extended
to the cases of 1 or 0 members of K arriving prior to the threshold.

Clearly, then, if the process succeeds, then 3 members of K arrived before the thresh-
old. More generally, if the process succeeds in finding the top b peers, then (b−1) members
of K arrived before the threshold.

—Condition 2—

Second, kb must arrive in position j, for some j ≥ T . This condition is a corollary
from Condition 1, but worthwhile to point out.

—Condition 3—

The third and final condition for success is that, with an arbitrary value of T , and
kb = j, for j ≥ T , it must be the case that `0 arrives before T .

The easiest way to understand the proof to this condition is in the classic case when
b = 1. Consider the case where `0 arrives after T .

1 2 3 4 ... ... `0 ... ...(T − 1) T kb

Figure 2: The case where `0 arrives after T .
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By the definition of `0, it is the next relatively best peer that arrives before kb. In
other words, kb is the only relatively better peer than `0 that arrives after T . However,
in the above case, the process will stop once `0 arrives because it is better than all of the
previous peers and arrives after the threshold. Therefore, if `0 arrives after T , then the
process will fail. Notice the difference when `0 arrives before T .

1 2 3 ... ...`0 ...(T − 1) T (T + 1) kb

Figure 3: The case where `0 arrives before T .

In this case, as the only peer better than `0 is kb, and `0 is automatically discarded
(because it is before the threshold), then kb becomes the only peer for which the process
will stop.

Now, for cases where b > 1, assuming Condition 1 and 2 are also met, it can easily be
seen that Condition 3 must also be met. So, indeed, Condition 1, 2, and 3 are necessary
and sufficient for success.

3.4 The b=4 Case

Proposition 3.1 For 4 < T ≤ n, we have

p4n(T ) =

(
T−1
3

)(
n
4

) · n∑
j=T

T − 4

j − 4
.

Proof. Observe that

p4n(T ) = P (C1, C2, C3)

= P (C1)P (C2|C1)P (C3|C1, C2).

We proceed by determining these probabilities.

Probability of Condition 1. The event space in which only k1, k2, k3 arrive in the first
T − 1 peers, meaning kb must arrive after, can be determined as follows.

• Choose the three locations in the first T − 1:
(
T−1
3

)
Note this does not guarantee exactly 3 of 4 members of K arrive prior to T .

• Choose the location for kb such that kb = xj for j ≥ T :
(
n−T+1

1

)
• Possible orders of K: 4!

• Possible orders of the remaining peers: (n− 4)!
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Let C1 be the case that three of the top four peers are among the first T − 1 peers. Then,
with a sample space of n!, the probability of C1 occurring is:

P (C1) =

(
T−1
3

)
·
(
n−T+1

1

)
· 4! · (n− 4)!

n!

=

(
T−1
3

)
·
(
n−T+1

1

)(
n
4

) .

Probability of Condition 2, given Condition 1. Note that in a random ordering, 4
n

is
the probability that xj ∈ K for j = 1, 2, ..., n. This term strongly correlates with the
1
n

term in (1). However, unlike the secretary problem where the best applicant may be
anywhere, in this problem, recall Condition 1 for success is that three of the top four are
among the first T − 1 peers. As a consequence of this, it must be the case that kb arrives
after the threshold. As such, given Condition 1, the probability that any peer xj = kb,
for j ≥ T is given by

P (kb = xj) =
1

n− (T − 1)
.

Probability of Condition 3, given Condition 1 and 2. Then, to calculate the probabil-
ity of the third condition for success, that `0 arrives in the first (T − 1) peers, note there
are exactly (T −1)−3 = T −4 locations which we would consider successful placement of
`0, but a total of (j− 1)− 3 = j− 4 total possible locations, where kb = xj. So, assuming
kb = xj,

P (`0 arrives in first (T − 1)|kb = xj) =
(T − 1)− 3

(j − 1)− 3
for j ≥ T.

The arrival of kb is definitely after the first (T − 1) peers as dictated by Conditions
1 and 2, but its actual arrival time is otherwise unknown. As such, it is necessary to
calculate the probability `0 arrives in the first (T − 1) peers for each possible arrival time
of kb.

P (Finding kb using T ) =
n∑

j=T

P (kb = xj) · P (`0 arrives in first (T − 1)|kb = xj)

=
n∑

j=T

1

n− T + 1
· (T − 1)− 3

(j − 1)− 3
.

Total Probability of Success. Let p4n(T ) be the probability of success with threshold T
given n peers. Note that the probability of success is only dependent on the probability
that Conditions 1, 2, and 3, denoted C1, C2, C3, respectively, are met.
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p4n(T ) = P (C1, C2, C3)

= P (C1)P (C2|C1)P (C3|C1, C2)

=

[(
T−1
3

)
·
(
n−T+1

1

)(
n
4

) ]
·

n∑
j=T

1

n− T + 1
· (T − 1)− 3

(j − 1)− 3

=

(
T−1
3

)(
n
4

) · n∑
j=T

T − 4

j − 4
, for 4 < T ≤ n.

�
Observe that p4n(T ) = 0, for n < 4 or T ≤ 4, and that success is guaranteed for n = 4.

Figure 4 shows the plot of p4104(T ). Note that the highest probability of success occurs at
T = 7789 with a probability p4104(7789) ≈ 36.8%.

0 2,000 4,000 6,000 8,000 10,000

0

0.1

0.2

0.3

0.4
p4104(7789) = 0.3680

T

p4 n
(T

)

Figure 4: A graph of threshold values versus their probability of success for n = 10, 000
and b = 4.

Interestingly, while the optimum ratio of T/n is much larger for b = 4 than in the
original secretary problem, the maximum probability of success is the same.
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Peers n Optimal threshold Tn Ratio Tn/n Optimal probability p4n(Tn)

10 9 0.9000 0.4889
20 17 0.8500 0.4170
40 32 0.8000 0.3899
80 64 0.8000 0.3786
160 126 0.7875 0.3732
320 250 0.7813 0.3705
640 500 0.7813 0.3692
1280 998 0.7800 0.3685
2560 1995 0.7792 0.3682
10000 7789 0.7789 0.3680

Table 1: Probabilities of success for certain n with b = 4.

As can be seen from Table 1, the ratio of the optimal threshold to the number of peers
is given by Tn/n ≈ 77.89%, for large n and b = 4. In addition, given Tn and a large n,
the optimal probability is given by p4n(Tn) ≈ e−1 ≈ 36.79%.

Theorem 3.2 The optimal stopping time for the b = 4 case approaches T = n
4√e . The

probability of success with this T approaches 1/e.

Proof. By Proposition 3.1, we wish to optimize

p4n(T ) =

(
T−1
3

)(
n
4

) · n∑
j=T

T − 4

j − 4

as n → ∞. As n → ∞, if the optimal T does not also diverge to infinity, then clearly
by the above formula this optimal T gives probabilities approaching zero infinitely often.
Now assume we do have T → ∞ as n → ∞. As we show below, this gives a higher
probability, and therefore the optimal probability in the below case will be the optimal
probability for p4n(T ).

Observe that (
T−1
3

)(
n
4

) · n∑
j=T

T − 4

j − 4
∼ T 3/(3!)

n4/(4!)
·

n∑
j=T

T − 4

j − 4

∼ 4T 4

n4
·

n∑
j=T

1

j − 4

∼ 4T 4

n4
·

n∑
j=T

1

j
.

By setting x = T/n, t = j/n and dt for 1/n, as n grows this sum is approximated by the
integral

∼ 4x4 ·
∫ n

xn

1

t
dt,
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which after applying the substitution u = t/n, we reach

∼ 4x4 ·
∫ 1

x

1

u
du

= −4x4 ln(x).

To optimize p4n(T ) we take its derivative, p′n(T ) = −16x3 ln(x) − 4x3. This function is
zero when ln(x) = −1/4, which means that p4n(T ) is maximed when x = 1/ 4

√
e. Recall

that x = T/n, and so the optimal threshold occurs at T = n/ 4
√
e.

To find the asymptotic likelihood of success at this T , first recall that since the har-
monic series grows with the natural logarithm (see [16]),

4T 4

n4
·

n∑
j=T

1

j
∼ 4T 4

n4
· (ln(n)− ln(T )) =

4T 4

n4
· ln
(n
T

)
.

Plugging in our choice of T ,

4(n/ 4
√
e)4

n4
· ln
(

n

(n/ 4
√
e)

)
=

4

e
· ln( 4
√
e) =

1

e
.

As this T gives an asymptotically positive probability, T must indeed grow with n, and
so T = n/ 4

√
e is indeed the optimal threshold. �

3.5 General Case

Now that the case of b = 4 has been investigated, we move to a general b. We again begin
by computing the precise probability function.

Proposition 3.3 For b < T ≤ n, we have

pbn(T ) =

(
T−1
b−1

)(
n
b

) · n∑
j=T

T − b

j − b
.

Proof. Again appealing to the three conditions which characterize success, observe that

pbn(T ) = P (C1, C2, C3)

= P (C1)P (C2|C1)P (C3|C1, C2).

We proceed by determining these probabilities.

Probability of Condition 1. In the general case, Condition 1 is that (b − 1) members
of K arrive before the threshold, T . In other words, k1, k2, ..., kb−1 arrive in the first T −1
peers, see Section 3.3 for clarification. So, the probability of C1 is as follows.

P (C1) =

(
T−1
b−1

)
·
(
n−(T−1)

1

)
· (b)! · (n− b)!

n!

=

(
T−1
b−1

)
·
(
n−(T−1)

1

)(
n
b

) .

(2)
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Probability of Condition 2, given Condition 1. Recall from Section 3.3 that Condition
2 requires kb to arrive after the threshold. As it turns out, because this fact is highly
dependent on Condition 1, that P (C2) remains the same.

P (C2|C1) = P (xj = kb|(b− 1) of K arrive before T )

=
1

(n− T + 1)
, for j ≥ T .

(3)

Probability of Condition 3, given Conditions 1 and 2. The method for achieving an
equation to find the probability of Condition 3 for any b ∈ N is much the same as that of
the case b = 4. As such, `0 must arrive in the first (T − 1) peers, excluding the (b − 1)
known to be in the first (T − 1), in accordance with Condition 1. Furthermore, as the
exact value of j, for xj = kb, is not known, the probability of `0 arriving in the first T − 1
peers must be summed over all possible locations of kb.

P (C2|C1)P (C3|C1, C2) =
n∑

j=T

1

(n− (T − 1))
· (T − 1)− (b− 1)

(j − 1)− (b− 1)
. (4)

Total Probability of Success. Let pbn(T ) be the probability of success with threshold T
given n peers, and note that the probability of success is only dependent on the probability
that Conditions 1, 2, and 3 are met.

pbn(T ) = P (C1, C2, C3)

= P (C1)P (C2|C1)P (C3|C1, C2)

=

(
T−1
b−1

)
·
(
n−(T−1)

1

)(
n
b

) ·
n∑

j=T

1

(n− (T − 1))
· (T − 1)− (b− 1)

(j − 1)− (b− 1)

=

(
T−1
b−1

)(
n
b

) · n∑
j=T

T − b

j − b
, for b < T ≤ n.

(5)

�

3.6 Generalized Secretary Theorem

Theorem 3.4 The optimal stopping time for a general b approaches T = n
b√e . The prob-

ability of success with this T approaches 1/e.

Proof. From our earlier work, we wish to optimize

pbn(T ) =

(
T−1
b−1

)(
n
b

) · n∑
j=T

T − b

j − b
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as n→∞. Recall from the proof of Theorem 1 that if the optimal T does not also diverge
to infinity as n does, that we get a probability tending toward zero. Thus, we take T →∞
as n→∞. Observe that(

T−1
b−1

)(
n
b

) · n∑
j=T

T − b

j − b
∼ T b−1/((b− 1)!)

nb/(b!)
·

n∑
j=T

T − b

j − b

∼ bT b

nb
·

n∑
j=T

1

j − b

∼ bT b

nb
·

n∑
j=T

1

j
.

By setting x = T/n, t = j/n and dt for 1/n, as n grows this sum is approximated by the
integral

∼ bxb ·
∫ n

xn

1

t
dt,

which after applying the substitution u = t/n, we reach

∼ bxb ·
∫ 1

x

1

u
du

= −bxb ln(x).

To optimize pbn(T ) we take its derivative, p′n(T ) = −b2xb−1 ln(x)− bxb−1. This function is
zero when ln(x) = −1/b, which means that pbn(T ) is maximized when x = 1/ b

√
e. Recall

that x = T/n, and so the optimal threshold occurs at T = n/ b
√
e.

To find the asymptotic likelihood of success at this T , first note that since the harmonic
series grows with the natural log (see [16]),

bT b

nb
·

n∑
j=T

1

j
∼ bT b

nb
· (ln(n)− ln(T )) =

bT b

nb
· ln
(n
T

)
.

Plugging in our choice of T ,

b(n/ b
√
e)b

nb
· ln
(

n

(n/ b
√
e)

)
=

b

e
· ln( b
√
e) =

1

e
.

As this T gives an asymptotically positive probability, T must indeed grow with n, and
so T = n/ b

√
e is indeed the optimal threshold. �

4 Data Analysis

Clearly this mathematical model would only be sound if the case of b = 1, which corre-
sponds exactly to the classic secretary problem, produces the same outcome. Indeed this
is the case as can be seen in Table 2.
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Bank Size b Optimal threshold ratio Tn

n
Probability of success pbn(Tn)

1 0.3680 0.36791
2 0.6066 0.36793
3 0.7167 0.36794
4 0.7789 0.36796
5 0.8189 0.36798
6 0.8466 0.36800
7 0.8670 0.36802
8 0.8826 0.36804
9 0.8950 0.36805
10 0.9050 0.36807
50 0.9803 0.36881

Table 2: Probability of success for various b with n = 10, 000.

Notice in Table 2 that as b → n, the probability of success tends toward e−1 ≈ 37%.
However, also note that the ratio of the optimal threshold to n approaches 1 as the bank
size increases.

Furthermore, the optimal stopping times also approach our asymptotic theoretical
result. Observe in Table 2 that the optimal threshold for b = 4 is T = (10, 000)(0.7789) =
7789 and d10,0004√e e = 7789. For comparison, we can see from Table 1 that the optimal

threshold for n = 2560 is T = 1995 and d25604√e e = 1994. So, our experimental results show

that even by n = 10, 000 the optimal threshold is only 0.01% off from the asymptotic
limit.

5 Further Extensions

So far we have only considered the case in which we want to secure connections with all
of the top b peers. However, it may be of use to consider the possibility of only securing
a certain number, c, of the top b peers, for c < b. The calculation would be largely the
same as before.

5.1 Probability of Selecting Exactly c Members of K

The same rules as the previous situation apply, however the conditions must be altered
in order to fit this more generalized case.

5.1.1 Condition 1 and its Probability

Recall from Section 3.3 that Condition 1 requires (b− 1) members of K to arrive prior to
the threshold. In a similar fashion, in order to select c members of K, (c − 1) members
must arrive prior to the threshold. Thus, the probability of Condition 1 is as follows:

the pump journal of undergraduate research 2 (2019), 1–19 15



P (C1) =

(
T−1
c−1

)
·
(
n−T+1
b−c+1

)
· (b!) · (n− b)!

n!
=

(
T−1
c−1

)
·
(
n−T+1
b−c+1

)(
n
b

) . (6)

5.1.2 Condition 2 and its Probability Given Condition 1

In this case, Condition 2 is still that xj = kc for some j ≥ T , but note that we are looking
for the cth member of K rather than the bth. The probability of Condition 2 in this case is
also quite similar to Equation 3. However, instead of only having one remaining member
of K after the threshold, there are b − (c − 1). Thus, we have the following probability
that xj = kc:

P (C2|C1) =
b− (c− 1)

(n− T + 1)
, for j ≥ T . (7)

5.1.3 Condition 3 and its Probability Given Condition 1 and 2

Indeed the idea behind Condition 3 for this extended case remains the same. In terms of
probability, we must change the (b − 1) term of Equation 4 to (c − 1). We must do this
because (c− 1) locations have already been chosen by Condition 1. Thus, the probability
of C3 is:

P (C2|C1)P (C3|C1, C2) =
n∑

j=T

b− (c− 1)

(n− (T − 1))
· (T − 1)− (c− 1)

(j − 1)− (c− 1)

=
n∑

j=T

b− (c− 1)

(n− (T − 1))
· T − c

j − c
.

(8)

5.1.4 Combining the Three Conditions

Our final equation is:

pbn(T ) = P (C1, C2, C3)

= P (C1)P (C2|C1)P (C3|C1, C2)

=

(
T−1
c−1

)
·
(
n−(T−1)
b−c+1

)(
n
b

) ·
n∑

j=T

b− (c− 1)

(n− (T − 1))
· T − c

j − c
.

(9)

Note that when c = b, Equation 9 is the same as Equation 5, consistent with the
previous model. Table 3 shows optimal threshold values and maximum probabilities
using b = 4 and c = 3.
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Peers n Optimal threshold Tn Ratio Tn/n Optimal probability pbn(Tn)

10 7 0.7000 0.6510
20 12 0.6000 0.5899
40 23 0.5750 0.5619
80 46 0.5750 0.5498
160 91 0.5688 0.5436
320 180 0.5625 0.5406
640 360 0.5625 0.5391
1280 718 0.5609 0.5384
2560 1435 0.5605 0.5380
10000 5604 0.5604 0.5377

Table 3: Probabilities of success for certain n with b = 4 and c = 3.

Comparing Table 1 and Table 3, we can see that relaxing the conditions under which
we consider the search a win requires much less searching and results in a much higher
probability of success.

0 2,000 4,000 6,000 8,000 10,000

0

0.2

0.4

p4
104

(5604) = 0.5377

T

pb n
(T

)

Figure 5: A graph of threshold values versus their probability of success for n = 10, 000,
b = 4, and c = 3.

6 Conclusion

A modified secretary problem does seem to be a good model for understanding BitTorrent
protocol. As it turns out, there is an optimal stopping point when searching for the best
possible seeders. While this stopping point varies based on the size of the bank and the
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swarm, it does provide the very same maximum probability of success as the secretary
problem, a remarkable discovery. In addition, we proved that the optimal threshold for a
bank size of b approaches n

b√e as n→∞.

While these results are very interesting, it may not be feasible to implement in the
real world because of the proportion Tn/n. In other words, because the optimal threshold
value is a large portion of n, you would need to make a connection with almost all peers
in the swarm before stopping the search. Keep in mind that there is overhead involved
in establishing connections, thus, the more connections made, the more time spent not
transferring the file. However, we have shown that slightly modifying the win conditions
significantly improves the odds of wining as well as shortens the search time.

Despite the potential problems with real world implementation, this work does show
some interesting and promising results. In particular, this model may still have further
extensions. For example, how could we calculate the probability of selecting at least
c members of K? If this were the case, what threshold value should be chosen? In
addition, the model provided in this paper may serve as the basis for a more general
secretary problem.
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