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Preface

In this Summer 2013 issue the reader will find articles that reflect the mission of
this journal.

The article by Allison Toney, et al., on the use of color in teaching geometry
seems like a novel idea, yet, it was put forth by Oliver Byrne in 1847. Toney, et
al., however, examine the e�cacy of using color to teach geometry through the
lens of modern research and o↵er some qualitative data.

On teacher training, Diane Lau reminds us of the basics of good teaching and
shares some of the ideas she uses in her mathematics teacher training classes.

Clinton Rempel tackles the uncomfortable phrase teaching to the test. His work
for the CSU Chancellor’s O�ce on “teaching via error analysis” identifies possible
mathematical weaknesses reflected in the responses students give on the
Elementary Level Mathematics (ELM) exam questions. He then o↵ers students
suggestions on avoiding these types of errors (see the CSU Math Success website
at http://www.csumathsuccess.org).

The article by Angelo Segalla and Yong Hee Kim-Park on Bayes’ Theorem o↵ers
some visuals that might evoke an interest in AP Statistics classes and perhaps in
other parts of the high school mathematics curriculum.

Kimy Liu encourages teachers to use the number line to show students that
fractions are numbers on the number line. Liu extends the usual idea of whole
number arithmetic on the number line to fraction addition, subtraction,
multiplication, and division .

Note that some articles are more anecdotal than others and do not use formal
references. This is in line with the philosophy of this journal to have its
contributors “write about what works for them in the classroom.”

Viji K. Sundar, Editor,
California State University, Stanislaus
vsundar@csustan.edu

Angelo Segalla, Editor,
California State University, Long Beach
asegalla@csulb.edu
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Color Work to Enhance Proof-Writing in Geometry

Allison F. Toney, Kelli M. Slaten, Elisabeth F. Peters, and
Shandy Hauk, shauk@wested.org

1. Introduction

Classroom teachers know that the use of color can be a powerful tool to keep
track of and make sense of mathematical information. The introduction of colored
chalk as well as overhead transparencies and colored markers into instruction in
the second half of the 20th century was a revolution in teaching tools. The
current uses of whiteboard and SmartBoard R� with colored markers continues this
tradition in instructional tools. The use of manipulatives and, to some extent
diagrams, among learners has been researched and incorporated into the toolbox
o↵ered to current and future teachers (e.g., Friel & Markworth, 2009; Smith,
Hillen, & Catania, 2007). However, the potential benefits of the uses of color in
mathematics learning have not been systematically researched. While the research
is new, the idea is not.

In 1847, Oliver Byrne published his reworking of Euclid’s Elements, in which he
used colored diagrams so extensively that the visual representations were
inseparable from the proofs they were intended to support (see Figure 1).
Published at a time when geometers’ attention focused on non-Euclidean
investigations, Byrne’s work was not taken seriously, and was “regarded as a
curiosity” (Cajori, 1928, p. 429). Byrne, however, did not intend his work for
mere entertainment, but said the book enhanced pedagogy and encouraged
retention of mathematical ideas by appealing to the visual. He suggested that by
communicating Euclid’s ideas through colorful renderings, instruction time could
be used more e�ciently and student retention increased (Byrne, 1847). One
hundred and fifty years later, why this is the case is finally coming to be
understood.

There are many ways that the use of color can reduce the di�culty of a problem
situation without decreasing its cognitive complexity. Just as thinking about a
phone number as three chunks of numbers allows us to remember a long string of
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Figure 1. Example of a geometry statement first shown in words
(translated from how Euclid expressed it), and then in colored
shapes as Byrne (1847) represented it.

digits, the use of color can simplify the load on working memory and allow a
learner to represent and strategize more e�ciently (Paschler et al., 2007). Recent
work in the learning sciences suggests that carefully selecting color in visual
representations and combining information in a figure or symbolic expression can
promote the integration of concepts. When presented with multiple sources of
information (e.g., when a teacher relates parts of a mathematical equation to a
graph or a student interprets a diagram), learners must direct their attention to
each individual source, encode separate pieces of information, and then manage
the stored information to make meaningful connections. Splitting attentional
resources is cognitively demanding and may serve as an obstacle to learning. In
fact, clinical research on the use of diagrams indicates that when individual
sources of information are visually integrated, student learning is improved (e.g.,
Bobis, Sweller, & Cooper, 1993).

The work to date on color-coding for understanding symbolic grouping is further
along than the work on color use in figures. In their research with pre-service
elementary teachers, McGowan and Davis (2001) observed that students initially
struggled to move from concrete manipulatives to algebraic expressions, and also
struggled to see connections to binomial expansions. One student, however,
conjectured that binomial expansions such as

(a+ b)n = an +
�n
1

�
an�1b+ · · ·+

� n
n�1

�
abn�1 + bn

could be re-interpreted through the use of two colors. The student represented a
particular problem with a black and white color scheme and substituted black for
a and white for b and restated the second-order equation using B for black and W
for white, as (B +W )2 = B2 + 2BW +W 2. This idea resonated with the rest of
the class and appeared in their subsequent work, indicating to the authors the
algebraic symbols had “become genuinely symbolic – symbolizing something” (p.
441).

In working with secondary students to find a general rule for sequences of
numbers, Waring (2008) used color to highlight relationships in pictorial
representations of the sequences. Using red and blue to di↵erentiate squares
within each figure, students were able to correctly identify a sum of the squares of
two numbers that related back to the figure number, n (see Figure 2).
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Figure 2. Red and blue (here, grey and black) coloring in the
4th figure of a sequence enabled students to see that the nth figure
generalized to n2 + (n� 1)2.

In research on student use of monochromatic figures, Gibson (1998) found that
students use diagrams in several complementary ways:

• to understand information,
• to determine the truthfulness of a statement,
• to discover new ideas, and
• to verbalize their thinking.

Yestness (2012), in extending Gibson’s work, noted that undergraduate students
felt that their drawings were for personal use and not for proof or explanation.
Nonetheless, when asked to explain a proof, students (and mathematicians) will
draw one or more diagrams to support an explanation (e.g., Burton, 2004;
Samko↵, Lai, & Weber, 2012). In fact, compact figural representations appear to
be an intuitively powerful component of mathematical learning in the context of
proofs and proving.

2. Nuances of Representation (models of) and Strategy (models for)

In investigating students’ routes from informal mathematical activity to formal
mathematical reasoning, Zandieh and Rasmussen (2010) explore models as
“student-generated ways of organizing their activity with mental or physical
tools” (p. 74). In particular, they specify a di↵erence between models-of
mathematical activity and models-for mathematical reasoning. It may be that
students can use color in constructing diagrams of geometry proofs in this way –
as a tool of representation, as well as a strategic tool for understanding.

In fact, the Common Core State Standards for mathematics, particularly the
Mathematical Practices, highlight the kind of thinking supported by intentional
color-coding. As noted in the Geometry strand, high school geometry students
build upon elementary and middle school geometry content as they construct
mental models for precise definitions and develop strategies for generating and
validating proofs (CCSSO, 2010). In particular, the Mathematical Practices
indicate that high school students are expected to: develop skill in abstract and
quantitative reasoning, which includes practice creating representations of
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problems (Practice 2); construct arguments and evaluate others’ arguments,
which includes understanding and employing definitions, assumptions, and
previous results for constructing arguments, while also communicating about and
evaluating others’ results (Practice 3), and appropriately and strategically using a
variety of tools, such as paper and pencil (colored or standard), ruler, protractor,
and dynamic geometry software (Practice 5).

3. Illustrating the Ideas: The Case of Charlotte

Here, we share what we are learning in our research on coloring and proofs. In
particular, we focus attention on Charlotte Knight (a pseudonym), an
undergraduate mathematics major preparing to be a secondary mathematics
teacher, and her work while enrolled in a college course focused on modern
geometry. Charlotte regularly employed coloring techniques in her proof-writing
that were similar to the proofs o↵ered by Byrne. Charlotte’s representations
enhanced her understanding in a way that may be of value to K-12 teachers and
their students. We met with Charlotte for a task-based interview with two main
components: first a review of one of the original colored proofs she submitted, in
which she correctly proved that the diagonals of a parallelogram bisect each other,
and then work on a proof covered in class, the Pointwise Characterization of
Angle Bisectors Theorem:

Let A,B, and C be three non collinear points and let P be a
point in the interior of \BAC. Then P lies on the angle

bisector of \BAC if and only if d(P,
 !
AB) = d(P,

 !
AC).

We had colored pens available on the table for her to use. Charlotte spent about
30 minutes of her 75-minute long interview describing how and why she used color
to enhance her proofs. She also used color extensively in generating her proof of
the Angle Bisectors Theorem (about 25 minutes). All four aspects of
diagramming o↵ered by Gibson (1998) and supported by Yestness (2012) were
apparent in Charlotte’s colored proofs.
In particular, Charlotte relied most on color in determining the truthfulness of
statements and writing out ideas. She used color to confirm or refute ideas and to
document the pathways she took. She also used it to reduce her cognitive load –
she found it less mentally taxing to use color (rather than symbols or words).
Including color served to help her sort and organize relationships, which she then
used to write out her proofs. Charlotte used colors in two ways:

(1) as an organizational tool to connect her diagrams to the content of her
proofs (i.e., as a tool of representation) and

(2) as a reasoning tool to understand the theorem (i.e., as a tool for
understanding).

3.1. Color as a tool of representation. In the proof she was asked to
recount, where she proved the diagonals of a parallelogram bisect each other,
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Charlotte employed a 4-color scheme. She used these colors in a way in which the
diagram was inseparable from the proof it was intended to accompany; she colored
the angles to correspond to the underlined colors in her proof (see Figure 3).

Figure 3. Charlotte’s colored proof of the statement that the
diagonals of a parallelogram bisect each other.

In describing this proof, she used the language “purple is congruent to purple,”
“orange is congruent to orange,” “pink is congruent to pink,” and “green is
congruent to green.” That is, the color replaced the alphabetical identifiers and
this is how Charlotte navigated her proof:

I needed to look at, like, labeled the purple angles and then I
underlined them for both so I knew purple was done . . . now
which one is similar to the purple ones . . . to the orange ones
and then I have pink and green left, well pink and then which
one is similar to pink? Green. So that’s how that, that’s how
that went.

In recounting this proof, she spoke primarily of using colors to organize her ideas
and understand the information required to write the proof.
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3.2. Color as a tool for understanding. Charlotte regularly used color to
indicate “direction” in a theorem. She did this when proving “if and only if”
theorems, saying she was uncomfortable with these because she had di�culty
keeping track of which “direction” she was proving, what information she could
assume, and what she was trying to show. In her proof of the Pointwise
Characterization of Angle Bisectors, Charlotte used a 2-color scheme. All
information in the necessary “direction” was designated green and all information
in the su�cient “direction” was designated blue. She then constructed and
colored a diagram to reflect this information. As a result, to Charlotte, the
statement of the theorem changed from “Then P lies on the angle bisector of

\BAC if and only if d(P,
 !
AB) = d(P,

 !
AC)” to “Then green if and only if blue”

(see Figure 4). This served to help her reduce the cognitive load of attending to
both implications in the “2 direction” theorem. It also aided her understanding of
the information required to construct a proof:

I’m not as familiar with this picture . . . so I needed to keep
referencing back and forth here and so I needed to know . . . it’s
kind of like a help to know where I’m going and it’s, it’s a
reference.

Figure 4. Charlotte’s reworking of the statement of the Pointwise
Characterization of Angle Bisectors theorem to “green if and only
if blue” in a class homework assignment.

Charlotte said using the color helped her stay organized, understand the theorem,
and stay on track with her proving goals:

This helps me remember which direction I’m going, ’cause all
the green stu↵ is what I knew from the first half of the
statement . . . I put all of that in green.

As she continued to construct the proof, Charlotte added a second layer of
coloring – one in which she used color to understand and manage the
mathematical content (see Figure 5).
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Figure 5. Charlotte’s second drawing for the Pointwise Charac-
terization of Angle Bisectors Theorem for “green is congruent to
green if and only if purple is congruent to purple.”

I don’t have [segment] AG, I don’t know anything about
[segment] AG so there’s no colors or label, there’s no – nothing.
I don’t know anything about [segment] FA. What I do know is
all in color, so it kind of helps me know, well, this is what I
have to work with, because I don’t want to go try to prove
[segment] FA and [segment] FG, I don’t have anything to work
with to get there, so it helps that I have the purple angles here
to say these are right . . . I don’t think I used anything that
wasn’t related to color in some way. Like I’d never talked about
just the segment FA, you know what I’m saying? I talked about
segment AP, but I gave it a blue squiggle.

4. Discussion

In advanced mathematics the prevailing wisdom is that pictures cannot prove.
Students are discouraged from relying much on their visualizations when it comes
to proofs and proving (Brown, 1997; Hanna, 2000). Charlotte agreed with this
sentiment. She felt it was valuable to have a colored proof for her own
sense-making. That is, a statement such as “If blue is congruent to blue, and
purple is congruent to purple, then red is congruent to red” might be good for her
notes. However, she asserted that without shared meaning, a proof such as this
would not be a correct proof for “mixed company.” Not only does Charlotte’s
view echo Byrne, it also illustrates something Martin Gardner said several years
ago, “There is no more e↵ective aid in understanding certain algebraic identities
than a good diagram. One should, of course, know how to manipulate algebraic
symbols to obtain proofs, but in many cases a dull proof can be supplemented by
a geometric analogue so simple and beautiful that the truth of a theorem is
almost seen at a glance” (Gardner, 1973).

Mathematicians have the mathematical language mastery that allows them to
navigate the formal symbolism of proofs. For students, use of the kinds of
color-coding in visual representations discussed here may enhance understanding
and may even serve as a viable proof-prepratation tool (Arcavi, 2003). While
Byrne’s (1847) assertion that using color-coding would allow students to see, at a
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glance, key parts of an argument generally has been a�rmed by 20th century
research on the mental “chunking” we do to manage complex information,
Charlotte’s work provides substantial support for this in the context of Geometry.
Additionally, we noticed a growing number of students employing the use of color
to support their diagrams in our advanced undergraduate mathematics classes –
particularly those in which a majority of the students enrolled were seeking
secondary mathematics teaching licensure.

As noted in the Common Core State Standards, some students use their
experiences in high school geometry to develop Euclidean and non-Euclidean
geometries as axiomatic systems. When students go on to college and prepare to
become teachers, a collegiate geometry course is where students gain essential
skills in visualization for “understanding the nature of axiomatic reasoning” and
“facility with proof” (CBMS, 2000, p. 41). Yestness (2012) has observed that
expanding pre-service teachers’ experiences to include color-coding as a tool for
their own learning, may “expand their pedagogical choices as teachers” (pp.
226-227).

5. Recommendations for Implementing Color in the Classroom

Although Charlotte was enrolled in an undergraduate modern college geometry
course, high school geometry provides a similar context for teaching with
color-coded proofs. The techniques might also be modified for use in the middle
school classroom to prepare students for the transition to writing proofs in high
school. Through our experiences using color to inform proof-writing in geometry
courses at the undergraduate and secondary levels, we have identified five
essential components for implementing color. We illustrate these
recommendations by way of an example, generating a proof for the following:

5.1. Communication. When incorporating color as a tool for
understanding, explicitly identify and communicate the strategy. Multiple
strategies may emerge during the proving process. Be specific about the use of
color. For example, in the figure below, we employ color as a tool for
understanding the prompt. All given information is colored green in the diagram
and indicators for the statement that is to be proved are drawn blue, thereby
changing the prompt to “If green is true, then blue must be true” (see Figure 6).
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Figure 6. The statements in the prompt translate to “If green,
then blue” in the diagram.

Continuing this process means the coloring scheme expands. It includes more
colors as we use the scheme as a tool for representation (see Figure 7).

5.2. Purpose. Every color that you use should have a purpose – it captures
some shared characteristics of the labeled parts. For example, in the diagram
below, segment AE is congruent to segment EC. The purple double-ticks on AE
and AC in the figure show congruency. We do not use purple again because there
are no other segments necessarily congruent to these. We use green, red, pink,
and blue in similar ways (see Figure 7). The monochromatic use of single or
double ticks is enhanced with color as a tool for reasoning.

Figure 7. The diagram is colored to show “green is congruent
to green” and “purple is congruent to purple.” Therefore “red is
congruent to red” and “pink is congruent to pink.” Thus “blue is
congruent to blue,” completing the proof.

5.3. Incorporation. After completing a color-coded analysis of a figure or
set of figures, the subsequent written proof should also incorporate the colors used
in the figure analysis – either by writing, underlining, or highlighting in the
appropriate colors. For example, in the two-column proof in the figure below the
two congruent angles \BAC and \BCA are colored red in the diagrammatic
proof. This is noted in the corresponding two-column proof by underlining the
congruence statement in red. Other statements are similarly underlined in green,
purple, pink, and blue (see Figure 8).
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Figure 8. The “colored proof” has been translated into a colored
two-column proof.

5.4. Consistency. When using color to teach geometry, be consistent with
color use. Always make a legend to label the use of color, and consistently explain
the property or characteristic captured or represented by the color in that color
and in words. Students will be more inclined to use color in their learning process
when it is a consistently modeled for understanding and representation. In Figure
6, in addition to coloring the “given” statements green and the “prove” statement
blue, we included a note to accompany the diagram. In Figure 7, we included a
colored legend to indicate congruences. This assisted us when we translated our
colored proof into a traditional two-column proof in Figure 8.

5.5. Resources. Provide color tools in the classroom such as colored pencils
or markers. This provides an equal opportunity for all students to participate by
using color. Note that students may be more inclined to use color in their personal
work when the tools are reliably available and their use expected in the classroom.

6. Conclusion

The utilization of color is not intended as a method for getting students’ attention
or as a means to make complicated drawings more attractive. Rather, through
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color-coding, relevant information in a proof is highlighted and significant
relationships among components are foregrounded. Proof coloring is also
beneficial for students to use as a learning tool on their own. A student can
choose, strategically, how to color accompanying diagrams.

The strategies we have illustrated here are to color-code as a tool (1) of
representation for facts and (2) for understanding of relationships. Such
color-coding can assist students in packing and unpacking information and
managing the complexity of proofs and proving. Furthermore, it may be that
teachers can better assess how a student is approaching proof writing based on
the color scheme utilized by the student. It provides teachers with a tool to help
communicate with individual students and their di↵erent approaches to proof
writing.
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Teaching To The Test, . . . Sort Of

Clinton Rempel, bcrempel@msn.com

1. Introduction

To enroll in college level mathematics courses freshmen entering the California
State University System must demonstrate “mathematical readiness,” through
one of the following criteria:

(1) SAT Math Reasoning Test: > 550,
(2) ACT Math: > 23,
(3) AP Math: > 3,
(4) Early Assessment Program (EAP): Exempt status, 1

(5) College Course: C or better,2

(6) Entry Level Mathematics (ELM) Examination: > 50.

Simply put: “Readiness” is essential to success in collegiate mathematics and
students who meet none of these qualifications are required to take essentially
high school mathematics remedial courses at the university! Far from
academically ideal and very expensive for taxpayers of California.

This article addresses a possible solution to improve the chances of those students
who have none of the first five bypasses to qualify through (6), the ELM.

In-house research done at California State University, Long Beach (CSULB)
shows that of the incoming freshmen taking the ELM, a population of students
with an average B+ high school GPA, nearly half score below 50. 3 This is likely

1
The California State University (CSU) requires high school students to take the English

Placement Test (EPT) and the Entry Level Mathematics (ELM) exam prior to enrollment in the

CSU unless they are exempt by means of scores earned on other appropriate tests such as the

CSUs Early Assessment Program (EAP) tests in English and Mathematics, the SAT, ACT, or

Advanced Placement (AP). See: CSU url on Admissions and Records.

2
ibid

3
Brown, C. “Analysis of ELM scores and GPA, California State University, Long Beach.”

2005. McNair Scholarship Student Research Project. (unpublished.)
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the case at many CSUs. As a result, at CSULB thousands of incoming students
are channeled through courses equivalent to high school algebra: MAPB 1, MAPB
7, and MAPB 11 (MAth Pre Baccalaureate). This must be burdensome on
University fiscal and personnel resources; as important, this is a significant time
delay for students who pursue a baccalaureate, extending the time a four to five
year academic program significantly.

Central to this article is the “Practice for ELM,” sponsored by the Chancellor’s
O�ce of the California State University system, a program to be established for
high school students to deal with this problem.

2. Background and Program Description

To assist high school students who will take the ELM qualify for college level
courses, the California State University Chancellors O�ce contracted this author
to develop an online practice test at for the CSU “Math Success” website where
high school students could use to gain more mathematics sophistication, and yes,
practice for passing ELM. See Figure 1.

Figure 1. ELM Practice Exam Website

The “quizzes” on this site consist of released ELM test questions used in previous
ELM tests. Figure 2 displays a typical question.
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Figure 2. Typical ELM Practice Quiz Question

I found that this platform is amenable for “teaching to the test,” but in a positive
fashion. I use it to teach the mathematics concepts high school students need to
qualify for college level mathematics courses. The online practice familiarizes
students with the various needed skills and concepts and, yes, also focus on the
types of problems students will encounter on the ELM. Thus in a way we are
“teaching to the test.” But the caveat is important: each wrong choice of answer
on a given test item is accompanied by what we could label an “error analysis”
that explains to the student why that particular choice is not correct. This is far
from a face-to-face explanation, but worth the e↵ort, I think.

Research on multiple choice tests indicates that wrong answers, “distracters,” are
designed carefully by test writers to expose the subject’s conceptual and
methodological errors, reflecting as much as possible the student’s competence in
the material itself, and emphatically not, the student’s test taking skills. This is
an unfortunate interdependence. Ideally, a test should expose the student’s
weakness in the subject matter, not test taking skills.
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I use the metaphor of “tip of an iceberg” to explore students’ hidden
misconceptions when looking for an explanation to wrong answers; the hidden
mass of the iceberg. Suggestions in the answer part of the program described in
the figures above are based the author’s educated guess of what has gone wrong.

In descending order of frequency, I found the following to be the possible “below
the surface” reasons for wrong answers:

(1) The student misunderstood or misinterpreted the problem (and the
answer would have been correct for that interpretation).

(2) The student made an incorrect calculation or algebraic faux-pas.
(3) The student made a conceptual error.
(4) The student made a careless error.
(5) The student guessed at the answer.

There is a limited number of suggestions to the students for wrong choices “4.
The student made a careless error” and to a lesser extent “ 5. The student
guessed at the answer”. These have to do with study habits, and are a challenge
to “repair” in any teaching-learning situation. Thus the first three reasons are the
ones the program concentrated on.

“1.The student misunderstood or misinterpreted the problem (and the answer
would have been correct for that interpretation)” is a balance between
communication skills and mathematics, perhaps more the former than latter: EL
comes to mind here.

Thus the “Teaching to the test” challenge here was advising students who had
made a conceptual or skills error. The responses to wrong answers were guided
mostly by these two reasons for an incorrect answer.

3. Teaching Using the Test

Our intent was to give meaningful feedback to students taking the practice test.
For each wrong answer I concentrated on interpreting the student’s thinking,
retracing the flaw I thought I detected, and providing an appropriate hint or
suggestion that might be helpful.

This is the meaning of the title “Teaching to the test . . . sort of.” It is more a
tutorial program than a teaching program. As such, the authors tried to “get
inside the student’s head” to discover where the mental process might need a road
sign. No answers were given outright, just hints and suggestions to steer the
student in the right direction; better a right direction.

There were fifty problems in the practice ELM, each with four distracters, so
there were scores of possible incorrect solutions. The challenge to the authors was
to identify “the left turn” or to use our metaphor, the bulk of the iceberg below
the surface that represented the incorrect thinking, and use the hint do what was
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needed to make the correct choice on the next attempt. If the student chose
another distracter, a di↵erent hint was given. Even if our hint did not exactly
reflect the student’s mental process, the student could compare and contrast his
or her mental process with the process in the feedback.

4. Examples

Di↵erent questions and their distracters on the practice test revealed di↵erent
shortcomings in a student’s conceptual understanding and procedural skill.

For the sample question in Figure 2 we display below two types of responses.
Figures 3 and 4 were the hints the authors planned. If the student picked
distracter A, only the hint shown in the top half of Figure 3 would appear.
Similar feedback is given for distracters B, D, and E in Figure 4. An approval
statement was presented to support the correct answer C.

The reader will appreciate that this innocent looking problem is not so innocent;
the student needs to know his or her geometry and use proportional reasoning.

Figures 5, 6, 7, and 8 o↵er a short explanation in the legend part of the figure.

Each of the next six pages contains a single screen shot that takes up the entire page.

This was done to make the screen shots more legible.
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Figure 3. One possible explanation for choosing the wrong an-
swer A or B to the problem in Figure 2.
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Figure 4. One possible explanation for choosing the wrong an-
swers D or E to the problem in Figure 2. Answer C is correct.
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Figure 5. ELM Practice Exam Problem 3 on number sense.

28 Journal of the California Mathematics Project



Figure 6. ELM Practice Exam Problem 10; the student could
make incorrect calculations and make conceptual errors in how
fractions are added. Appropriate responses are given.
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Figure 7. ELM Practice Exam Problem 18 is an algebra problem.

The distracters tried to expose algebra errors. And again,
for each answer, the authors provide a hint that may clarify
students’ thinking.
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Figure 8. ELM Problem 13 involves interpretation.

The student could make interpretation errors. The problem
is complex enough that the student could get confused in which
process should be pursued. As with the other problems, each
answer, wrong or right has a response that is hopefully helpful.
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5. Conclusion

The research the authors did on the possible reasons for the wrong answers on the
ELM practice test was interesting and hopefully helpful to students and insightful
for teachers and student. Professional development for mathematics teachers
could include analysis of distracters on multiple choice questions followed by
plausible though processes leading to them. Another possible application of this
approach is to help students develop their self-awareness. The feedback helps
them think about what they did. The development of self-awareness is important
in educational maturity, and the essence of mastering mathematics is correcting
one’s mistakes.
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Twenty Years Training Future Middle and High School
Mathematics Teachers

Diane Lau, diane.lau@csulb.edu

1. Introduction

There is an unspoken question in my head at the first day at beginning of each
semester when I teach our entry-level credential course for hopeful future middle
and high school mathematics teachers. As I scan the roomful of hopeful, smiling,
expectant faces, and am about to begin the class, I think to myself: “So you think
you want to be a high school mathematics teacher, uh?” My also unspoken
answer is “OK, Im here to help you decide if this profession is for you, and if so,
how to be the best possible teacher you can be.”

I then heartily welcome the newbies to the credential program and to this first
course in the program: “EDSS 300M: Introduction to Teaching High School
Mathematics.” 1

This is my twentieth year in the mathematics department at California State
University, Long Beach as the Single Subject Student Teaching Coordinator;
teaching two, sometimes one, EDSS 300M courses, and placing, on average, about
fifty student teachers in the local school districts schools each year along with
assigning university supervisors for each student teacher. To keep my finger on
the pulse of the program I also supervise, on average, eight student teachers.

My experience: four years at Torch Middle School, thirty years teaching
mathematics at Gahr High School in Cerritos, CA, chair of the department and
district mathematics coordinator for a 15 of those years.

Put this all together and I think I have come to recognize the traits necessary to
succeed as a teacher in the middle and high school mathematics classroom.

1I shall refer to “high school mathematics” for short, but the program is geared to train
middle and high school mathematics teachers. The single subject credential in mathematics allows

its holder to teach mathematics in departmentalized classes grades K-12. Since grades K-6 are

usually not deparmentalized, K-6 is usually the purview of multiple subject credentialed teachers.

c�2013 Author

33



2. First Days Of Class

After a general welcome and self-introduction of each student (I have each student
memorize/internalize each of their classmates’ names “from the get-go”), I begin
with ten qualities and characteristics that a teacher should have to be successful
(regardless of grade level and not necessarily order of importance):

(1) Have a caring personality.
(2) Memorize the student names quickly.
(3) Be extremely (and I mean extremely!) organized.
(4) Have a sound understanding of the fundamentals of mathematics.
(5) Be familiar with pedagogy in general, and that of teaching mathematics

specifically.
(6) Break down large mathematics concepts and skills to incremental,

connected pieces, in the manner of a spiraling curriculum.
(7) Develop meaningful lessons that:

(a) are flexible (anticipatory),
(b) involve group activities,
(c) di↵erentiate instruction, and
(d) are guided by continuous formative evaluation like checks for

understanding.
(8) Consistently enforce firm but fair classroom management.
(9) Be a good listener; kids have a lot to tell you–and teach you.

(10) Above all, be a team player with students and colleagues–even when the
decisions go against your wishes.

We work on these and related teacher qualities the entire semester; class every
meeting.

3. Example

Here is one of my course opening activities: “Think about the teachers you
yourself have had and share each in turn with the class three positive
characteristics.” As simple as this is, it is a wonderfully enlightening experience
for all, me included. We get nostalgic, amusing, surprising, and most of all,
experiences that portend some important class goals.

They remember teachers who

(1) knew all the student names shortly into the semester,
(2) made it a point to ask students about their interests outside the math

classroom, in other parts of their high school experience, say, the soccer
team,

(3) had them explore the material as a special assignment, or in group
activities,

(4) gave them projects that brought mathematics to life for them,
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(5) used manipulatives to explore and enrich mathematics concepts,
(6) were attentive to students mathematical and individual needs,
(7) did not “just lecture” all the time.

And more. Too many to mention here, but the point is that this activity seemed
to be central to their remembering successful teachers! Interestingly, these
aspiring teachers rarely gave teacher mastery of subject matter as a criterion of
(in their eyes) a successful teacher. I do not interpret this as suggesting that a
firm grasp of the fundamentals of mathematics is not essential to be a successful
teacher. Rather, it is positive a�rmation that the teachers they remember were
skilled enough in the subject matter that this was never an issue, a necessary but
not su�cient quality of a successful teacher.

4. Student Teachers

The coursework (approximately one year) in the credential program in
mathematics begins with my class: EDSS 300M, and continues with the
California Department of Education (CDE) approved single subject credential
program courses that include courses in Health Science, Psychology of the
Adolescent, Education of Exceptional Individuals, Technology, to mention some,
and culminates with EDSS 450M, our mathematics teaching methods course
designed to prime our single subject candidates for the student teaching
experience, the “trial by fire” experience of teaching and managing three classes
with, of course, support from the master teacher and the university supervisor.
Class management: the litmus test. While most candidates had earlier
demonstrated a natural sense of what makes for good teaching, very few of the
one hundred plus student teachers I supervised over the years had a sense of how
much time and e↵ort is required just to maintain good classroom management,
before teaching the subject begins. “Successful classroom management does not
just happen,” I tell my candidates; “it takes a lot of thought, planning, the
fortitude to stand firm but fair, and the decisiveness to follow through in an
impartial manner.” I continually review and remind class management techniques
with my student teachers over and over again during the post-observation
debriefing sessions. If I had to pinpoint one “bump in the road” to earning a
single subject credential, class management would be it. Keeping students
engaged in the mathematics material is another important class management
skill! And this, of course, implies a solid understanding of the subject. 2

5. Classroom Management, A Biggie

I am and have been concerned that there is a weakness in our program: our single
subject credential candidates have to have at least 45 hours of observation in

2The reader may be aware that the “subject matter mastery” requirement of the sin-

gle subject programs may be satisfied with either a CTC approved subject matter program, or
the ability to pass the mathematics California Subject Examination for Teachers (CSET). This

translates into a wide variation of subject matter mastery on the part of our candidates.
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classes in the field during the EDSS 300M class, but with very little exposure in
front of the class. The weakness is that they need to be more involved;
observation is not enough. Just watching an experienced teacher, his or her
seemingly easy classroom management style, has a tendency to lull our candidates
into thinking that classroom management is easy. It is not, and too many of our
candidates hit this brick wall when they student teach.

For example, grouping students seems a simple enough activity with the expected
noisy thirty plus youngsters getting up from their seats, meandering around the
room (yes, even after the teacher has made it clear how the activity is going to
work), and finally, after the not unexpected stolen social greetings and
fist-bumping hellos settling into the group seats, ready for the teachers
instructions.

“It is not magic,” I tell my credential candidates; “but you have work at it.” I
follow this advice with explicit directions and have the candidates act out the
many techniques and examples of assigning students to groups.

I emphasize that classroom management techniques need not be dictatorial. Far
from it, since this would ultimately be detrimental to young students. In my
teacher training class we practice classroom management techniques that are
friendly but e↵ective, beginning with a warm greeting for each student at the
door, ending with a farewell, punctuating the class period in between with
noise-reduction-attention-getting techniques like “Clap your hands (once, twice,
three times).”

We practice many other teaching techniques in my class, but formative assessment
is another focal point in my teacher training class. Beginning with checks for
understanding during each lesson, I believe this teaching-learning process
technique is central to good teaching. Such assessment must be done often: every
day, at the beginning, in the middle (especially in the middle), and at the end of
each lesson. I stress the importance of beginning the lesson with a check that the
necessary prerequisite skills have been learned, that students retained these
necessary skillsyes, since yesterday! “Dont assume your students are going to
remember” I remind our candidates. “Precede each new lesson with a small initial
assessment; use checks for understanding of key points throughout the lesson, and
end with an short exit assessment to make sure that the students learned the
material.”

In conclusion, there is, of course, a lot more than described here that I teach my
future teachers in EDSS 300M. Yet, I always wish for more time in the semester
to share with my students the many, many other, probably as important facts of
successful teaching, but at in this course I do cover the more important ones.

Has it been worth it? Unquestionably yes! The icing on the cake is the flow of
emails I get from some of our successful candidates. Here are but two recent ones
I received:
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Hi Professor Lau, I just wanted to thank you again for being such an

amazing University Supervisor during my teaching credential process at

MCHS and CSULB! I really enjoyed working with and learning from you
during this semester. I’ve grown so much and I honestly feel so much more

prepared now than ever before to run my own classroom with e�ciency

and ease.
Signed

Professor Lau, I just accepted a position to teach math at XYZ High

School. I want to thank you for helping me develop as a teacher this
semester and being patient with me. I had valuable experience through

the Cal State Long Beach Single Subject Credential Program and I am

blessed to have learned from great educators. Again thank you for
everything you have taught me.

Signed

Yes, its worth it!
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Counting on Bayes’ Theorem, or “Back to the Future”

Angelo Segalla, Angelo.Segalla@csulb.edu
and Yonghee Kim-Park, Yonghee.KimPark@csulb.edu

Dear Sir, I now send you an essay found among the papers

of our deceased friend Mr. Bayes, and which, in my opinion

has great merit and well deserves to be preserved.

A letter to John Bowlton, dated December 23, 1763 from

Richard Price.

Abstract. The main thrust of this article is that Bayes’ Theorem becomes plau-

sible for high school AP Statistics classes since students are generally uneasy with

conditional probability. A “Back to the Future” metaphor demonstrates the clev-

erness of the theorem, which never fails to surprise students. A simple example,

followed by visuals that are quasi-proofs will hopefully enhance the conceptual

basis of this important theorem. Finally, suggestions of more sociologically sig-

nificant examples illustrate the theorem’s statistical power.

1. Introduction

Bayes’ (1701-1761) work “An Essay towards solving a Problem in the Doctrine of
Chances” was published posthumously in 1763 by his friend Richard Price (see
quotation). Also, Joseph-Louis Lagrange (1736-1813, born in Turin, Italy as
Giuseppe Luigi Lagrancia), unaware of Bayes’ publication, worked on the same
topic and extended the theory in an essay of his own in 1774.

Bayes’ Theorem, from a counting point of view, is a sensible approach for
introducing probabilities in high school: first as fractions with decimals, then as
fractions with a common denominator, and finally with problems whose
probabilities are proper fractions with (usually) di↵erent denominators. This
approach provides a bonus for high school students. It is a conceptual framework
for understanding fractions through a systematic review of their properties (an
often neglected skill in school mathematics).

We have found that Bayes’ Theorem works nicely in high school AP Statistics
classes. Our approach also reinforce students’ facility with those rational numbers
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that are ordinarily called “proper fractions” (with di↵erent denominators), that is,
fractions we get from working out probability problems, then as fractions with the
same (common) denominator, then as decimals, and finally as percents. For
example, the probability at least one “heads” on a flip of three honest coins is 7/8
or 0.875 or 87.5%.

Most introductory statistics textbooks have a section on Bayes’ Theorem, usually
following a discussion of conditional probability, and illustrate by examples of how
a priori information about a compound event (an earlier event in a tandem of a
sequence of two events) will change the calculation of the probability of a set of
outcomes, often dramatically.

2. A Simple Experiment

Consider two bowls, Bowl A, and Bowl B. Bowl A contains 10 red marbles and 30
green marbles for a total of 40 marbles. Bowl B contains 20 red marbles and 20
green marbles also for a total of 40 marbles. Grand total: 80 marbles. All marbles
are indistinguishable by touch. The list below summarizes the experiment.

STEP 1: Choose one of the two bowls at random, say by flipping a fair coin; the
identity of the chosen bowl is not revealed.

STEP 2: Also randomly, choose a single marble from the given bowl.
STEP 3: The marble is green. This we know.
STEP 4: Find the probability that the green marble came from Bowl A. That is

that Bowl A was the one chosen in STEP 1.

This problem, starting with the concluding event and recovering the antecedent
event, forces us to “think backwards” to put it informally. Therefore, our subtitle
“Back to the Future” as in the movie. Intuition would suggest that the marble
most likely came from Bowl A since that bowl contains more green marbles than
Bowl B. What percent of the time would our intuition be correct?

Symbolically, let A be the event of picking Bowl A, B be the event of picking Bowl
B, G the event of picking a green marble, and R the event of picking a red marble.

In this example choose Bowl A or Bowl B with equal probability. So here
Pr(A) = 1

2 = 0.5 = 50% and Pr(B) = 1
2 = 0.5 = 50%. Let Pr(G) and Pr(R) be

the probability of picking a green marble or red marble respectively (whether it
be from Bowl A or B. We seek the probability that we picked Bowl A, given that
the marble we have is green, G. Symbolically, we seek Pr(A|G).

Now, reversing A and G (correcting the order), Pr(G|A) represents the
probability of picking a green marble given that we actually chose Bowl A. Since
in our case there is an equal number of marbles in each bowl (a special condition
to be sure), the combined number of marbles can be used to find the total
probability of each color marble. This and other information are summarized in
Table 1 where it is easily seen that Pr(G|A) = 30

40 = 3
4 = 0.75 = 75%.
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Table 1. Summary of probability using fractions, decimals, and percents.

Bowl A Bowl B Total

Red marbles 10/40 = 0.25 = 25% 20/40 = 0.50 = 50% 30/80 = 0.375 = 37.5%
Green marbles 30/40 = 0.75 = 75% 20/40 = 0.50 = 50% 50/80 = 0.625 = 62.5%

Totals 40/40 = 1.00 = 100% 40/40 = 1.00 = 100% 80/80 = 1.000 = 100%

Taking some liberty with probability theory, to be in the cell where
“30/40 = 0.75 = 75%” we must have chosen Bowl A, which occurs with
Pr(A) = 0.5, and, since the ball is green, the probability that that green ball
came from the entire collection of green balls is (0.75)/0.625. Putting all this
together (again, informally) the probability of having chosen Bowl A given that
the marble is green is ((0.75)(0.5))/0.625 = 0.6 = 60%.

3. Bayes’ Theorem

Bayes’ Theorem (Rule) tells us how to compute the a posteriori probabilities
when we know information ahead of time, the antecedent. The probability of a
hypothesis X in light of a piece of new evidence, Y, is

Pr(X|Y ) =
Pr(Y |X)Pr(X)

Pr(Y )

In our example:

Pr(A|G) =
Pr(G|A)Pr(A)

Pr(G)
=

(0.75)(0.5)

0.625
= 0.60 = 60%

Why is this so? In Figure 1 we use Venn diagrams to describe our experiment
visually. We take the interior of the rectangle to be the sample space S and its
area to be equal to one. The next four diagrams illustrate the probability (area)
that an event in sets X, Y , X [ Y , and X \ Y , respectively, occurs: Pr(X),
Pr(Y ), Pr(X [ Y ), and Pr(X [ Y ).

The last two diagrams are pertinent to our example. They demonstrate that the
area of the intersection of X and Y , (X \ Y ), does not change whether we are
given that event X has occurred or event Y has occurred. This is key to proving
Bayes’ Theorem. This fact and some assumptions about conditional probability
(which can be defined and proved) illustrate the answers to the questions we ask
(and others we can ask) about our experiment. That is, the last two pictures
demonstrate what happens if we are told, a priori , that “X has happened” so
that all the points in the sample set S except for those in set X, including those
in set Y are now excluded! Set X is now the new (total) sample space. Similarly
for “Y has happened.”
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Figure 1. Venn diagrams for the sample space S, and sets X, Y ,
X [ Y , and X \ Y .

4. Proof of the Theorem

Now note in the diagrams that the area (probability) of (X \ Y ) does not change
if we are told that X has happened or Y has happened.
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This hints that we can write the following if X happened

Pr(Y |X) =
Pr(X \ Y )

Pr(X)

and if Y happened,

Pr(X|Y ) =
Pr(Y \X)

Pr(Y )

But

Pr(X \ Y ) = Pr(Y \X)

So

Pr(Y |X)Pr(X) = Pr(Y \X) = Pr(X \ Y ) = Pr(X|Y )Pr(Y )

And

Pr(Y |X) =
Pr(X|Y )Pr(Y )

Pr(X)

With the proper exchange of letters, the solution to the problem of the marbles is:

Pr(A|G) =
Pr(G|A)Pr(A)

Pr(G)
=

(0.75)(0.5)

0.625
= 0.60 = 60%

And this backs up our intuition – but not overwhelmingly!

5. Trees

Yet another visually appealing method for simple probability problems, and
simple Bayes’ Theorem problems, that we found to work well in high school
classes is illustrated in Figure 2 using a tree diagram. The answer to the question
in our experiment (60%) is in the tree diagram, but needs to be interpreted. We
leave this interpretation open for the reader with the hint that 37.5 + 25 = 62.5.

Also note a tree diagram can elicit interesting questions to be posed by the
teacher. For example, the sum of all the percents at the right of the tree must be
100% = 1, the probability of the entire sample space S.
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Figure 2. Tree probabilities of fractions, decimals, and percents.

6. Conclusion

The power of Bayes’ Theorem can be appreciated even further in sociological
examples that involve drug testing and profiling. Examples that challenge our
intuition abound in the literature. Surprise can be the name of the game, so to
speak, in statistics. Consider how on the evening of a presidential Election Day
television networks project the winner with less than 1% of the votes counted!

Bayes’ Theorem can play an important part in high school students’ AP
Statistics. Paired with the pedagogical emphasis on the di↵erent ways we can
express rational numbers, the topic might also be used in other parts of the high
school mathematics curriculum.
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Toward a Conceptual Understanding of Fractions Using The

Number Line Model.

Kimy Liu, kliu2@csustan.edu

There is a quote from the teaching of Zen to illustrate the journey of seeking deep
understanding of concepts.

“Before I had studied Zen for 30 years, I saw mountains as

mountains, waters as waters. When I arrived at a more intimate

knowledge, I came to a place that I saw mountains not as mountains,

and waters not as waters. But now I finally obtained the essence of

the teaching and I could be at peace, for I saw mountains once again

as mountains and rivers once again as rivers” (Ch’uan Teng Lu).

1. Introduction

When teachers teach a new topic, when students try to learn something and “they
cannot wrap their heads around it”, they will go through the phase of “seeing
mountains not as mountains.” Even students comfortable with new concepts are
often clumsy and awkward in conveying ideas to others. The tendency to follow,
for example, an algorithm by rote memory and without understanding is real and
tempting, for confronting misconceptions can be frustrating.

Teachers and students can demonstrate their perseverance by committing to this
journey until the new information is fully integrated with prior knowledge,
putting their minds once again at peace; when they “see mountains” once again
“as mountains.”

The author is indebted to Viji Sundar, Professor of Mathematics at CSU Stanislaus, for

her encouragement, suggestions, and insights. The author would like to acknowledge the Central

California Mathematics Project for the opportunity to work with the 2012 Summer Institute

participants in making this article possible.
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2. The Number Line Model; The Unit

Students’ fear of fractions is well documented (Ashcraft & Kirk, 2001) and it does
not usually show up in the primary grades, when they learn the basic ideas and
vocabulary of fractions such as “one-half, two-thirds, and three-quarters.” Rather,
this fear surfaces when they are taught to add and subtract fractions with di↵erent
denominators, and the extensions to multiplication and division of fractions.

Fractions research shows that dividing the unit segment into fractional increments
extends the number line concept already familiar to students from whole numbers
to fractions, enabling learners to visualize the relative positions of fractions,
including improper fractions and mixed numbers (Lamon, 2005; Wu, 2008). A
learner begins by creating a number line using a paper strip, marking the
positions of 0 and 1, to create a unit segment. Next, making a foray into
fractions, the learner divides this unit interval, for example, into 10 equal parts,
yielding the new unit of measurement of 1

10 . Extending the concept to non-unit
fractions, the learner can next visualize two of those units, 1

10 and another 1
10 , as

two 1
10 s or “2

1
10 s” and eventually, a point on the number line called 2

10 . Similarly,
the learner can divide the distance between 0 and 1 into 5 equal parts and mark
o↵ three 1

5 s or, as we soon see, 3⇥ 1
5 = 3

5 . That is,
1
5 is the new unit of

measurement and we have three such lengths on the number line.

Current literature shows that using the number line model facilitates the
conceptual understanding of fractions for first time learners in the primary grades,
as well as upper grade students, and teachers. According to Lamon, (2005),
understanding “unitization” is the key to developing the conceptual understanding
of fractions. The principle of unitization enables the learner to connect the prior
knowledge of arithmetic of whole numbers to arithmetic of fractions.

How does this knowledge help the learner develop conceptual understanding of
the mathematics of fractions? Here is a report on a professional development
summer institute program we held last summer, at CSU Stanislaus.

Forty seven Grade 3-5 teachers participated in 40-hours of training using the
“Sample Fraction Institute Model” developed by California Common Core State
Standards in Mathematics Task Force (CaCCSS-M). One of the findings we
learned from this summer institute was that teachers often have a restricted view
of fractions, which begets erroneous rules in mathematical reasoning. For
example, when we asked the participants in the summer institute “which fraction
is closer to 1: 6/7 or 7/6? And why?”, ten of 33 participants who gave the right
answer also gave us a wrong justification such as “6/7 is closer to 1 because 7/6 is
over 1” (answers obtained from the CCMP Pretest, 2012). It is possible that this
reasoning stems from prior knowledge that fractions are always less than one, so
they eliminated 7/6 as a viable option and chose 6/7 by default. This
misunderstanding was observed repeatedly in the various class settings of
pre-service teacher classes and in-service professional development. During the
first day of the “Fraction Institute” when we asked the participants to provide an
example of a fraction, the majority of responses were of the numbers less than 1.
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Failing to include improper fractions as examples of fractions can lead to a narrow
and restricted view of this important topic. To help the learners expand their
views on the di↵erent types of fractions, we propose to use number line model to
teach fractions.

3. Sample Lesson 1: Locate Fractions on the Number Line

The first lesson of learning fractions using the number line model is to help
learners see a fraction, say, 1

2 ,
3
4 , or

4
3 as a point on the number line. At our

summer Fraction Institute, participants first created a number line with whole
numbers by first marking the unit segment on the number line and then using this
unit of measurement to locate the numbers 2, 3 and 4. Next, they constructed
another identical number line placed it parallel to the first and divided the line
segment between 0 and 1 into 3 equal parts and used the new unit of 1

3 to mark
the rest of the number line. As participants marked the fractions 1

3 ,
2
3 ,

3
3 , etc. on

the number lines, they noticed that 1 and 3
3 were the same point on the line, as

were 2 and 6
3 , 3 and 9

3 . (See Figure 1.)

The use of the number lines helped students to expand their understanding of
fractions to mixed number and improper fractions. Furthermore, use of the
number line model transformed the concept of equivalent fractions from an
abstract algorithm to concrete pictorial representations. Using the number line
models, learners can rename fractions using the principle of unitization and then
applying the schema of whole numbers to locate proper and improper fractions as
well as the mixed numbers (See Figure 1). The following sample lesson shows how
the participants applied the principle of unitization to locate fractions.

Figure 1: Locate the fractions on the number line.

Figure 2 shows a set of examples that challenged learners to investigate their
present understanding of fractions. The task was to locate the fractions A, B, and
C on the lines. At first, the majority of participants assumed that A, B, and C
had the same value because they were on the same vertical line (same point) of
three parallel and seemingly identical number lines. Upon further introspection,
however, participants noticed the relative position of 0s and 1s on each number
line. They noticed that two of fractions A and C were less than 1, and the
fraction B was greater than 1. Thus, the number line model helped participants
understand and visualize the value of a mixed number or improper fraction as a
fraction whose value is greater than 1.
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Figure 2: Find the fractions A, B, and C on the Number Lines

When asked how to determine the fractions of A, B, and C; here is a paraphrasing
of what some said: To locate A, B, and C on the number lines, one must apply
the knowledge of denominators and numerators. This helps to determine the
“unit of measurement” in each number line. This is an application of unitization.
For example, in the first line, there are eight equal parts between 0 and 1 where
each part has a value of 1

8 . The point A is at the sixth mark after 0; therefore, it
is at the position of 6⇥ 1

8 = 6
8 . In the second line, there are four equal parts

between 0 and 1 where each part is 1
4 . The point B is at the sixth mark after 0,

therefore, is at the position 6⇥ 1
4 = 6

4 = 3
2 = 1 1

2 . Although A and B appear to
have the same numerator, they are of di↵erent values because the unlike
denominators yielded in the di↵erent units of measurement in the respective
number lines. Thus, to answer this question correctly, learners must have
understanding on how to determine the unit of measurement on the number line.

The traditional pizza or pie analogy can be proportionally incorrect because the
teachers were not able to easily partition the fractions in the proper units. They
did not have a solid understanding of unitization and had a hard time judging
whether or not answers they got were reasonable.

To measure anything requires a unit. Consider the non-example of putting a pile
of dust on top of a second pile of dust. What do we get? Not two piles of dust,
but a large pile of dust. This is because the concept of a pile is not a well-defined
unit of measurement, unlike “ one inch,” “one apple,” or “one a minute.” The
juxtaposition of examples and non-examples of “unit” gives the learner a better
understanding of the principle. The learner will understand that the principles of
unitization apply in the domain of whole numbers and fractions, but it does not
apply in the domain of piles of dust, or other undefined units.

4. Sample Lesson 1: Locate Fractions on the Number Line

To add or subtract fractions, the learner must first transform the fractions into
the same unit of measurement, after which the arithmetic of whole numbers can
be applied. Just as we can rename one hour as 60 minutes, using unitization, the
learner can rename a fraction. For example, 1 can be renamed as 3

3 or 5
5 or 100

100 .
One-half can be renamed as 2

4 ,
3
6 ,

5
10 , or

10
20 . If learners understand the concept of

unit and unitization, they will have conceptual understanding of
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(1) the why and how of adding and subtracting fractions with like
denominators,

(2) the why and how of converting fractions with unlike denominators to
ones with like denominators, and

(3) the ability to articulate the rationale.

5. Sample Lesson 2: How to Add or Subtract Fractions with the
Number Line Model: Find 4

3 � 1
2 using the number line.

Figure 3a illustrates the same unit on the number line with three di↵erent
sub-units: 1

3 ,
1
2 , and

1
6 . With these common sub-units, the answer to the

subtraction is easy: 4
3 � 1

2 = 8
6 � 3

6 = 5
6

To check our answer we use the inverse of subtraction to go over the process on
the number line in the reverse order. See Figure 3b without the hash marks.
4
3 � 1

2 =? is the same as 4
3 = 1

2+?. The answer is displayed on the figure:
1
2 + 5

6 = 3
6 + 5

6 = 8
6 = 4

3 .

Figure 3a: Setting up the solution of the subtraction problem.

Figure 3b: Solution of the subtraction problem.

6. Sample Lesson 3: Multiplication and Division of Fractions

In addition to the adding or subtracting fractions with unlike denominators, the
learner is also prone to feel challenged by multiplication and division of fractions
conceptually. Multiplication of fractions, such as 2

3 ⇥ 3
4 , can be represented with

an area model and might be easier for the learner to understand. (See (Wu, 2008)
for more details.)

Divisions of fractions, lacking a relevant schema to facilitate understanding seems
the most foreign operation to teachers and students. In the absence of conceptual
understanding, many teachers will use mnemonic of “KFC” (“Keep” the first one,
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“Flip” the second one, and then “Change” the division sign to multiplication) to
teach students the procedure of solving division of fractions.

Unfortunately, without the conceptual understanding of the division of fractions
this strategy could be over-simplified and confusing because they do not remember
which fraction they should “flip.” Furthermore there is not mathematical
operation called “flip.” More importantly, most teachers have di�culty explaining
to the students why they should flip the second fraction in solving the division of
fractions. This was part of the feedback from participants of our summer institute.

To overcome this learning barrier, the California Task Force suggests teachers use
the number line model to help students make sense of the division of fraction
problems.

6.1. Sample Lesson 3: How to Teach Division of Fractions:
Find 2÷ 2

3 and 5
8 ÷ 1

4 using the number line.

(1) Locate 2 and 2/3 on the number line. (See Figures 4a, 4b)
(2) Apply the arithmetic of whole numbers to the arithmetic of fractions:

How many times will 2
3 fit into 2?

(3) Use the inverse of division, which is multiplication or repeated addition,
to check if the answer is correct.

Figure 4a: How many 2
3 can fit into 2?

Figure 4b: How many 1
4 can fit in 5

8?

In both examples above, teachers can turn division of fraction, from an abstract
expression, into a concrete example by using the number line.

Method: use two paper strips as the manipulatives. The learner can find how
many 2

3 of 1 unit can fit into 2, 1 units. The learner can also demonstrate the
understanding that “the second number” in both problems is the new unit of

50 Journal of the California Mathematics Project



measurement. To engage in academic discourse, the learner must know its proper
name: divisor.

Moreover, the tangible notion of a fraction comparing the parts present to the
parts that make a whole is typically a problem when students are told that a
fraction is merely a division problem with the dividend called the numerator and
the divisor called the denominator. Educators should compare the two notions,
showing their common result. For example, the division notion of 15÷ 3 is the
number of groups of 3 that comprise 15. The fraction notion of 15

3 is 15 units of
1
3 . Since 3 units of 1

3 comprise 1, as the number line conveys, the task reduces to
the division notion with the result of 5.

The ability to name the numbers correctly will help students in the process of
conveying what they know or ask clarifying questions as needed. The learner can
also use their prior knowledge and proficiency in the first language (division of
whole numbers) to help them understanding a new concept and their second
language (fractions).

7. Connection to the Common Core Standards
for Mathematical Practice

For many learners, the mathematics of fractions is a foreign concept. The
terminology and syntax used in the math discourse at times appear to be a second
language. The understanding of unitization helps the learners to bridge the
understanding of arithmetic of whole numbers (the schema of their first language)
to arithmetic of fractions (similar schema presented in their second language).
The uses of the number line help learners to think in pictures. When the learners
have the right pictures in their heads, and words to accurately describe pictures in
their heads, they gain proficiency in thinking, speaking, and reasoning with the
mathematics of fractions.

In this process, the learner demonstrates the ability to “model with mathematics”
(Common Core Standards for Mathematical Practice, Standard 4), “attend to
precision” (Standard 6), “look for and make use of structure” (Standard 7), and
“look for and express regularity in repeated reasoning” (Standard 8).

When a teacher engages students in mathematics practice as outlined in the
common core standards, the teacher is guiding students to develop an in-depth
conceptual understanding so as to “make sense of problems” (Standard 1) and
“construct viable arguments and critique the reasoning of others” (Standard 3).
When learners communicate with others about the process of finding equivalent
fractions, they demonstrate their perseverance in problem solving and their ability
to use language to convey their conceptual understanding.

Using the number line model, teachers can teach the specific abstract concepts
including unitization, adding and subtracting fractions, multiplication or divisions
of fractions with concrete manipulative (e.g. uses of paper strips) or pictorial
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representation. Helping students move flexibly between concrete examples,
pictorial representations, symbols and mathematic formula of fractions can help
students deepen their understanding and their ability to engage in academic
discourse about fraction with others.

In the practice of discourse, teachers and students both deepen their
understanding of fractions and values and uses of the number line models. In
other words, they develop conceptual fluency of fraction sense, developing critical
thinking skills while paving the road to success in algebra and geometry. At the
end, the learners not only once again see the mountains as mountains; they can
also describe the wonders they experienced while journeying through the
mountains.

To e↵ectively teach the concepts and uses of fractions using the number lines,
teachers must integrate the four levels of depth of knowledge about fractions as
defined by (Webb, 2005). In other words, teachers must first provide students a
wide range of examples of fractions and show the minimal di↵erence between
fractions and non-fractions. Second, teachers should adopt the two-prong
approach: (i) helping students develop the conceptual understanding of fractions
by connecting it to their prior knowledge of whole numbers and real-life
connections, and (ii) helping students to develop procedural fluency and
conceptual fluency in making sense of fractions problems using the number line
models.

To help the students with diverse learning needs, including students with limited
English proficiency and math vocabulary, teachers need to model how to use the
vocabulary correctly in the academic discourse. Teachers need to use the “think
aloud” (van Someren, Barnard, & Sandberg, 1994) to make their cognitive and
reasoning process overt to the learner. Ultimately, teachers need to understand
that teaching fractions using the number lines is one of the vehicles to teach
students to the Common Core Standards of Mathematical Practice.
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