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Introduction

The articles in this journal emerge for the most part from mathematics classrooms.
They are written by teachers, for teachers. They describe ideas and methods teachers
feel are innovative, work for them, and want to share these nuggets of the teaching-
learning process with other mathematics teachers. The writing style is informal, col-
loquial, and cursive. In this sense, the journal could be called a portfolio of teaching
ideas for the mathematics classroom based on personal teaching experiences. There
are some exceptions. We include some research articles, but even these are aimed at
direct applications to help teachers in the classroom to teach mathematics more
meaningfully.

The articles are blind reviewed by mathematicians and mathematics educators and
accepted or not accepted based on their recommendations.

The reader will find the articles in this journal have some candid and not always com-
plimentary statements on the existing state of mathematics education in the United
States. And there are candid statements from now successful teachers whose own
mathematics education could easily have turned them away from the subject they
now dearly love to teach as a result of an insensitive teacher they might have had in
their pre-college days. Some of these experiences described in this journal are based
on the modus operandi of mathematics education indigenous in other countries, some
from our own American classrooms. Whichever the case, the teachers who submit
articles to this journal “have a story to tell;” a story about mathematics education.

We hope the reader will enjoy these articles and will also feel free to contact the edi-

tors with positive suggestions on how to make the journal better. We also encourage

classroom teachers to submit a manuscript of their own for review and possible pub-
lication.

Thank you,

Viji K. Sundar, Editor Angelo Segalla, Editor
Department of Mathematics Department of Mathematics
California State University, Stanislaus California State University, Long
vsundar(@csustan.edu asegalla@csulb.edu
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Getting Students Excited About Learning Mathematics

Jen-Mei Chang
Department of Mathematics and Statistics
California State University, Long Beach
jchang9@csulb.edu

Introduction

It wasn’t so long ago when mathematics students would diligently transcribe the
words of wisdom of their professors without a hint of doubt. The popular phrase “just
do it” has become an easy way out when things are not so easy to explain.

In many the Asian countries, mathematics students are not encouraged to ask ques-
tions. In fact, questions are considered impolite and a waste of time as they interrupt
the class flow and decrease the amount of materials to be covered. Growing up in this
culture, I was never curious enough to find out what powerful things mathematics
could do in the real world. I never had an intrinsic motivation to learn mathematics,
which I believe contributed to my mediocre performance on math tests. Little did I
know that a single mathematics course later in life would alter my point of view so
drastically and shape my teaching philosophy in such a profound way.

To me, the teaching and learning mathematics go hand-in-hand and always happen
simultaneously. A teacher is not a walking library, which passively delivers infor-
mation upon request; instead, a teacher plays the vital role of encouraging innovative
thinking as well as stimulating curiosity. This can be done, for example, through the
use of open discussions and hands-on projects.

What I like to do often times in the classrooms is to use various real-world problems
to motivate the learning of certain concepts to get students excited about what these
ideas could do before diving into the formality. And having a research area that is
somewhat industrial-oriented, I have the privilege of bringing in a lot of interesting
applications for this purpose.

For example: (Items 2 and 3 are not necessarily for high school.)

1) The idea of image sharpening can be used to motivate the learning of ma-
trix multiplications.

2) The ideas behind Google’s PageRank can be used to provide a practical use
of eigenvalues and eigenvectors.

3) The ideas of image compression can be used to motivate the learning of
matrix factoring such as singular value decomposition.

4) And the idea of handwritten digit classification can be used to motivate the
study of tangent approximation.
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In particular, I will use the rest of this article to provide a short illustration how one
may use a real-world problem to motivate the learning of “tangent” approximation. I
will do so by uncovering its uses at different grade levels as a way to increase stu-
dents’ interest in learning the concept.

The take-home message for students as well as teachers is to challenge oneself in find-
ing something that intrigues one in mathematics and see how far one can go with that
idea. Hopefully, by doing so, students learn to discover more wonderful ideas in
mathematics on their own.

An Illustrative Example

Some students first see the formal concept of tangent (or tangent line) in a high school
geometry class where the tangent line (or simply the tangent) to a curve is the
straight line that intersects the curve at one and only one point, (See Figure 1.)

Figure 1. An illustration of tangent line to a curve at the point of tangency.

Other students first see the formal concept of tangent in a more algebraic setting
where they are routinely being asked to find the equation of tangent lines without re-
ally seeing the purpose of doing so. As this point, it is important to convey the notion
of tangent approximation through various non-polynomial functions, such as y = v/x
as shown in Figure 2(a).

By obtaining the equation of the tangent line at x = 1, which is a first degree polyno-

. : 1 1 : .
mial equationy = f(x) = 5% t 5, one can use it to approximate values such as /2

that are otherwise impractical to calculate by hand. With this, \/7 ~ 1(2)+l =151s
2 2

shown in Figure 2(b). Although the approximation is somewhat crude, considering
that the actual value of V2 is about 1.414, it more or less provides a good starting
point for further investigation.
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Approximation

(a) (b)
Figure 2
In order to decrease the error of such polynomial estimation, one may
consider using higher-order polynomials such as quadratic or cubic
polynomials, therefore arriving at the notion of Taylor approximation.

At the point of approximation, x = a, we have...

N (n)
Fx) = 2%@ _ay

f'(a) f"(a)

=f(a)+1—!(x—a)+2—! S (@)

(x—a)2+~-+T(x—a)N.

Notice that the truncation f(x)= f(a)+ f'(a)(x—a) resembles the equation of the

tangent line discussed previously. Hence, for f(x) = v/x with a = 1, we can approxi-
mate /x using the series

| 1 1 5
i=l+—(x-D-=G-1)+—(x-1Y ——x-1"+ 1) =4
R T T R PG
Forx=2,

Fagal L 15 7 21 33 49

— - — +
2 8 16 128 2567 1024 2048 32768

One may choose to take as many or as few terms as needed depending on the desired
accuracy. In fact, most of Texas Instruments (TI) calculators such as TI-89 Titanium
and TI-Nspire use this series to calculate non-polynomial function values such as this
one.

The idea of tangent approximations can be generalized in higher dimensions. A func-
tion in three variables whose graph, z = f(x, y), is a surface in 3-dimensional space.
The notion of tangent is no longer a line in this setting. Instead, there are infinitely
many lines that are tangent to a point (x,y) = (a, b) on the surface, as depicted in
Figure 3(a).
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Approximation

(a) (b)

Figure 3. (a) An illustration of a tangent plane to a function at a
given point. (b) Tangent plane can be used as a linear approximation to
a function/surface for points near the point of tangency.

Together, these lines form a tangent plane Ax+ By+Cz= D to the surface at(a,b).

The tangent plane gives a measure of linear approximation to the function and can be
used to calculate function values for points relatively near (a, b) as shown in Figure
3(b).

D — Aa— Bb

As expected, the absolute error of approximation at (a,b), f(a,b)—T , in-

creases as we move away from the point of tangency. As long as we stay relatively lo-
cal, the tangent plane captures the variation afforded by the function and provides a
convenient way to predict behaviors of the neighboring points.

Although our intuition fails us beyond three dimensions, the idea of linear approxima-
tion can be similarly extended to as many dimensions as we wish. In the high-
dimensional analog, a surface is called a manifold if it looks like a plane locally along
with a way to move from one patch to the next. A manifold is differentiable if we can
do calculus on it. The “tangent” is formally called tangent space in higher dimensions.

The most common differentiable manifolds we often encounter are the spheres,
S§2:x% 4+ y? = r? - any small portion on the sphere looks like a plane and the latitudes
and longitudes provide a recipe to relate points and give position.

Now, let us consider using the method of linear approximation to a real-world prob-
lem.

o Have you ever thought about how an ATM recognizes the dollar
amount on a handwritten check?

o What about how the postal office sorts mails according to zip
codes?
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These two problems are considered under the umbrella of handwritten digit recogni-
tion/classification. You must wonder how these problems would have anything to do
with manifold and tangent space. Before we proceed, a little background in the math-
ematics of digital images is in order.

A digital image of size MXN can be represented using a matrix of size MXN where
each cell of the matrix contains a value between 2° and 2* that gives different shades
of gray and k is the number of bits a computer affords. For example, an 8-bit (k = 8)
machine has 256 (0 -

255) shades of gray where a value of 0 means the pixel is completely dark while a val-
ue of 255 means the pixel is completely white.

Figure 4 shows how a simple black-and-white image is represented by a correspond-
ing matrix of the respective size.

——
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Figure 4. An illustration how an 8-bit image is represented by a matrix.
In this example, black pixels are represented numerically by 0 while
the white pixels are represented by 1.

Furthermore, we can concatenate an image matrix by columns so it can be viewed as a
vector in MN-dimensional space. Precisely, the second column of the image matrix is
moved underneath the first, the third column is then moved below the previous two,
etc., as shown in Figure 5. This way, a 6x7 image corresponds to a vector in R*, a 42-
dimensional space.
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Figure 5. A matrix of size MXN can be viewed as a vector in
MN-dimensional space after column concatenation. In particular,
M = 7 and N = 6 in this figure.

Thus, each monochrome digital handwritten image, in Figure 6, is a member of R%,
where d represents the resolution of the images. Notice that d = 322 = 1024 in Fig-
ure 6.

O/ 345678 1

Figure 6. Example digits. Each digital image is of 32Xx32, therefore
corresponding to a vector in R'"*,

The problem of handwritten digit classification is the art of classifying an unseen digit
using knowledge gained from a collection of labeled one, i.e., ones that we know the
identity of. For simplicity, say we want to identify the unknown digit in Figure 7(a)
given the known digits in Figure 7(b).
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(a) (b)
Figure 7. (a) A probe digit. ~ (b) Gallery digits.

The goal is to somehow learn the characteristics exhibited in the gallery patterns that
are class-specific and can be used easily for assigning membership of the probe.

Geometrically, if we imagine all the 4's (from the training) live on some underlying
manifold and all the 9's (from the training) live on another high-dimensional mani-
fold, as depicted in Figure 8(a), then the straight-line distances between the probe and
two random points in the gallery are shown as the dashed lines in Figure 8(a).

(a) (b)

Figure 8. The two curves passing through the digits are the digit
manifolds from the training digits. (a) The Euclidean (straight-
line) distance between the probe and the gallery digits are depict-
ed as the dashed line. (b) The tangent distances between the se-
lected gallery digits and the probe.

This straight-line distance is typically known as the Euclidean distance. Based on this

distance measure, the probe would be labeled as the digit 4 since its distance to the
selected digit 4 is less than the distance to the selected digit 9.
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On the other hand, we can create a tangent space at each of the selected gallery pat-
terns and calculate the tangent distance between the probe and these gallery points.
As illustrated in Figure 8(b), the tangent distance between the probe and the selected
digit 4 is the shortest path between the probe and all the points on the tangent space.
Measuring distances this way, the probe would be classified as digit 9, which turns out
to be the correct label. For a more detailed discussion, readers are referred to [1].

It is not hard to see that comparing a point to a space of points would work better
than comparing it to just a single point since a space of points exhibit much more var-
iation than a single point. This is why the tangent distance works better than the Eu-
clidean distance for this problem.

Concluding Remarks

An important point to make here is that the given example is not to impress you with
all the fancy things tangent space/distance can do; rather, the idea of taking a simple
concept like the “tangent approximation” and seeing how far it can go is what we are
really after.

In general, students tend to learn mathematics better when there is a concrete appli-
cation to relate abstract concepts to. It is easier to engage students in the problem-
solving processing when they are motivated by real-world problems that are particu-
larly personal to them.

You might think that the ability to come up with real-world applications is somewhat
limited to people who have backgrounds in industrial training. In fact, if we would just
pause and try to think outside of the box for a while before we sit down and plan the
day's lesson, there are numerous other ways to motivate the learning of mathematics
that work for our individualized teaching styles. I challenge you to find something that
works for you.

References

P. Simard, Y. Cun, J. Denker, and B. Victorri. Transformation invariance in pattern recognition -
tangent distance and tangent propagation. [JIST, 11:181—194, 2001.
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Making Sense of Transformations of Graphs

Joshua D. Chesler
Department of Mathematics and Statistics
California State University, Long Beach
jchesler@csulb.edu

The topic of transformation of graphs supports student activities like looking for
patterns, working with graphing technology, and making connections between dif-
ferent representations of functions. For example, students may look for patterns in
the graphs of the following symbolically-represented functions:

flx) =2
gx)=x2+1
h(x)=x2+2

They may then be able to accurately describe the graphs as vertical translations of
each other and be able to predict what the graph of j(x) = x? -1 looks like. Indeed,
the NCTM endorses activities such as these:

“Exploring functions of the form f(x) = a(x - h)? + b(x - h) + c and
seeing how their graphs change as the value of h is changed also
provides a basis for understanding transformations and coordinate
changes” (NCTM, 2001, p. 300).

The preceding quote acknowledges that “exploring” and “seeing” only provide a
basis for understanding transformations. That is, noticing and describing a pattern
only gets us part of the way toward understanding why a pattern exists.

This article presents a way to make sense of the transformation of graphs of func-
tions including:

o vertical and horizontal translations
o stretching and shrinking

o reflections.

This approach to transformations both relies on and deepens students’ under-
standings of functions and their representations.
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Functions and Their Representations

Understanding the transformation of functions and their graphs requires an un-
derstanding of functions. I will build upon the basic idea that a function is a rela-
tion between inputs and outputs where each input determines exactly one output.
The variable representing the inputs is often described as the independent varia-
ble whereas the outputs correspond to the dependent variable (the output de-
pends on the input). The symbols and representations that are used to describe
functions reflect this idea. In the rest of this section [ will be very explicit about the
connection between the input-output relationship which characterizes functions
and the various representations for functions; when teaching about transfor-
mation of graphs one of my primary goals is for students to strengthen their un-
derstanding of these same connections.

The notation y = f{x) indicates that y is a function of x. That is, the input is called x
and the output is called y or f{x). We can refer to the function as for as f(x) or, if it
exists, as the equation or rule which determines a function relationship between x
and y. For example, we can think of the equation y = x? as determining y as a func-
tion of x. These ideas are reflected in the notation:

input

——

Output = f(Input) J:_, - ];(32
output output

We could represent all the input-output pairs that satisfy the function as ordered
pairs (x, y). This notation can be thought of as (input, output).

The graph of the function f associates each of these ordered pairs with a point on
the xy-plane. Each point is associated with a horizontal coordinate (the input) and
a vertical coordinate (the output). The plane can be represented as:

output

input
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Numerical representations are also connected to these most basic ideas about
functions. The function y = x? could be represented with the following (partial)
numerical representation:

Input -2 | -1 | 0 | 1 | 2 | 3
Output 4 | 1 | 0 | 1 | 4 | 9

This emphasis on input/output relationships and on the representations of func-
tions will allow us to go beyond merely “exploring” and “seeing” how graphs are
transformed. In the following sections I will present a way of understanding trans-
formations.

Vertical Shifts

Vertical shifts are typically described according to the following rule:

Let f be a function and c be a positive integer. Then the graph
of y = f(x)+ c is the graph of of y = f(x) shifted upward by c
units. The graph of y = f(X) - c is the graph of y = f(x) shifted
downward by c units.

In general, the set of rules for transformations is fairly easy to memorize for trans-
formation of graphs. If forgotten, the rules can quickly be re-established with a few
examples on a graphing calculator. Unfortunately, this could be a disincentive to
grappling with and building understanding of the ideas which make these rules
true.

Furthermore, the study of transformation of graphs is an opportunity for students
to deepen their understanding of functions and their representations. In the con-
text of vertical shifts, we may examine a function like g(x)=x?+1 as a transfor-
mation of f(x) = x2. In other words, g(x) = f{x) +1.

The first question [ would ask my students is: Have we done something to the input
or to the output of f? The key realization is that we have added one to the output,
f(x), so we would expect something to happen in the vertical dimension of the

graph of f.

The structure of g(x) tells us that, for the same input, g assigns an output one
greater than fassigns. If (a, f(a)) is any point on the graph of f then (aq, f{a) + 1) is
a point on the graph of g. This means that the graph of g looks just like that of f
shifted up by one unit. This can be seen in the numerical representation as well.
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X -2 -1 3 1 2 3
fx)=x2 4 1 0 1 4 9
g)=fx)+1 4+1 1+1 0+1 1+1 4+1 9+1

These various representations all reveal the following fact about the function
g(x) = f[x)*c: with the same input, the output of g will be ¢ units larger or smaller
than the output of f.

Horizontal Shifts

Horizontal shifts can also be understood in terms of the input-output relationship
which characterizes functions. Investigative activities with graphing calculators
can reveal the rule:

Let f be a function and c be a positive integer. Then the graph of
y =f(x + c) is the graph of y = f(x) shifted left by c units. The graph of
y =flx - c) is the graph of y = f(x) shifted right by c units.

Thus, a function like g(x) = (x + 1)? is a transformation of f(x) = x2. Thatis, g(x) =
f(x+1); fis the function which squares its input and the input-output relationship
given by g(x) = (x + 1)?is the same as using that determined by using x + 1 as the
input for f.

Again, we start with the question: Have we done something to the input or to the
output of f? We have added 1 to the input, X, so we would expect something to
happen in the horizontal dimension of the graph of f{x).

The equation g(x) = f(x + 1) tells us, for example, that g(0) is the same as f{1), g(1)
is the same as f{2), and so on. If we use an input for g(x) that is one less than the
input for f(x) then we get the same output. So for every point (a, f(a)) on the graph
of f, the point (a-1, f{a)) is on the graph of g; note that g(a-1) = f{a). This means
that the graph of g looks like the graph of f shifted to the left by one unit.

X -2 -1 3 1 2
flx) = x2 9 4 1 0 [u 4
g(x) = flx+1) 4 &)1 &) Mg Ay 9

In general, if g(x) = f(x + ¢) then we can use a-c as an input for g and the output will
be f(a). An input c units smaller will yield the same output.
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Stretches and Shrinks

We now turn our attention to horizontal and vertical stretches and shrinks. Once
again, when presented with the symbolic representation of a transformed function
we will first ask the question:

Have we done something to the input or to the output of the
original function?

In the function g(x) = ¢ -f(x) the output of f has been multiplied by c. We should
thus expect something to happen to the graph in the vertical dimension. That is,
for the same output, g(x) will give us the output of f(x) times c. So if (a, f(a)) is on
the graph of f then (q, cf{a)) is on the graph of g for any real number c and any a in
the domain of f.

For example, if f(x) = x3 and g(x) = 3f(x) = 3x53, then the graph of g(x) will be the
graph of f(x) stretched vertically by a factor of three.

When 0 < ¢ < 1, the graph of f{x) is shrunk vertically. Consider, if f(x) = x3 and
h(x) = ¥%-f[x) = ¥2-x3. Given the same input, the output of h(x) will be one half of
the output of f(x).

X -2 -1 0 1 2
flx) =x3 - 0 1 8
gx) =3f(x) -24 -3 0 3 24
h(x)= %f(x) -4 - 0 Y 4
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What about g(x) = f{cx)? Here we have done something to the input so we would
expect something to happen to the graph horizontally. The structure of g tells us
that fand g will have the same output if the input for g is 1/c times as large as the
input for f.

For example, if f(x) = x2 and g(x) = f{2x) = (2x)? then g(*2) = f(1), g(1) = f(2), 9(3)
= f(6), and so on. In general, if the point (a, f{a)) is on the graph of f then the point
(a/c, fla)) is on the graph of g for any nonzero number ¢ and any number a in the
domain of f. Thus:

o ifc>1then a smaller input for g yields the same output as f;
that is, the graph of g is the graph of f shrunk horizontally.

o If0<c<1thenalargerinput for g yields the same output as f;
the graph of g is the graph of f stretched horizontally.

The graph below shows f(x) = x2, g(x) = f(2x) = (2x)?, and g(x) = f(¥ex) = (2 x)2.
The point (2, 4) on the graph of f corresponds to the point (1, 4) on the graph of g
and (4, 4) on the graph of h.

K)=f(2x)

It's worth noting that, for some functions, stretching vertically is the same thing as
shrinking horizontally. Likewise, stretching horizontally is often the same thing as
shrinking vertically. For example, if f(x) = x? then g(x) = f(2x) shrinks f{x) horizon-
tally and h(x) = 4f{x) stretches f{x) vertically according to the observations made
above. Thus in this example we have g(x) = f(2x) = (2x)? = 4x? = 4f(x) = h(x); i.e,,
g(x) = h(x). This is perhaps easier to see in the graph below; it shows that we can
think of the point (1,1) on f as being vertically stretched to (1,4) or horizontally
shrunk to (%2,1).
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Reflections of Graphs

In the preceding section we did not see any examples where c is negative. It is im-
portant to acknowledge that the reasoning we used to understand stretches and
shrinks does not change whether c is positive or negative. However it is also worth
describing this scenario in terms of reflections across the x- and y-axes. We'll con-
sider two examples:

g(x) =-f(x) and h(x) =f(-x); ie,c=-1

We can describe the function g(x) as follows: if you use the same input for fand g
the outputs will always be opposite in sign. Since the outputs have been affected
we should expect to see a vertical transformation. Indeed, since the same input
yields opposite outputs for fand g, the graph of g looks like the graph of f reflected
over the x-axis. If the point (a, f(a)) is on the graph of f then (a, -f{a)) is on the
graph of g.

With h(x), the input of f has been altered so we would expect a horizontal trans-
formation. If you use opposite inputs for h and f then you get the same output.
That is, if the point (g, f{a)) the graph of f then (-a, f{a)) is on the graph of h. The
effect is that the graph of h is the graph of freflected across the y-axis.
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g(x)=-f(x) fx)=x*+1 h(x)=f(-x) flx)=x3+1

Combining Transformations

The reasoning we have used can be applied to more complicated transformations.
For example, if g(x) = 3f(x+2) - 1 then, following the order of operations, we may
conclude that the graph of g looks like the graph of f shifted left 2 then stretched
vertically by a factor of 3 then shifted down 1. Moreover, if the point (g, b) is on
the graph of f (i.e., f{a) = b) then the point (a - 2, 3b - 1) is on the graph of g.

This thought process can be applied to quadratic functions; i.e., functions which
can be written in the form f{x) = ax? + bx + ¢, a # 0. These functions can also be
written in “vertex form”. For example, the function represented as g(x) = -2x% + 4x
+ 1 can also be represented as g(x) = -2(x - 1)? + 3 by completing the square. The
structure of g(x) = -2(x - 1)? + 3 indicates that g(x) can be thought of as a trans-
formation of the function f{x) = x?. That is, the graph of g(x) looks like the graph of
f(x) shifted over 1 unit to the right, flipped over the x-axis and stretched vertically
by a factor of 2, and then shifted up 3. This means that the vertex must be at (1,3).

y
Step 3:

y=-21(x-1)+3
=-2(x-1)*+3
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Since we can write any quadratic function in vertex form we can always think of a
quadratic function as a transformation of f{x) = x2. This is a convenient way to un-
derstand some basic facts about the graphs of quadratic functions. For example,
we may conclude that all quadratic functions have parabolas for graphs. We may
also conclude that the sign of the leading coefficient determines whether the graph
opens upward or downward. Furthermore, we can see that transforming a parabo-
la can resultin 0, 1 or 2 zeros.

Concluding Remarks

[ have taught transformation of graphs to students at various levels. [ have found
that, with a little bit of structure, students are generally successful at exploring
transformations and making correct conjectures. The discussion above presents a
way to help students make sense of and justify those conjectures. Moreover, it
presents an opportunity for students to strengthen their understandings of func-
tions and the multiple representations of functions. For example, the question of
whether a transformation is vertical or horizontal depends on whether we have
altered the output or input of the original function. It is important for students to
“explore” and to “see” the patterns which emerge in the study of transformation of
graphs; it is even better to encourage their mathematical curiosity and to help
them make sense of why these patterns exist.

Reference

National Council of Teachers of Mathematics (NCTM). Principles and Standards for
School Mathematics. Reston, VA: NCTM, 2000.
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WeBWorK - Part 11

Perceptions and Success in College Algebra

Shandy Hauk
Senior Research Associate WestEd
shauk@wested.org

Angelo Segalla
Department of Mathematics and Statistics,
California State University, Long Beach
asegalla@csulb.edu

Introduction

This is the second of a three-part article meant to familiarize practicing teach-
ers with WeBWorK, an open-source web-based software designed to support
students’ out-of-class attempts in mathematics learning. Used in many U.S.
schools and colleges, the software (a) presents mathematical exercises, prob-
lems, or tasks, (b) students work out the problems, preferably with paper and
pencil to one side of a computer, and (c) enter their solutions into the comput-
er, that is, into the window provided by the program. ! WeBWorK then gives
immediate feedback (“correct” or “incorrect”) to the student, but the interface
does not correct a student’s errors or give hints or point to conceptual flaws in
case of an incorrect answer. ?

If students need help, they are encouraged to seek out a fellow student, a tutor,
or the instructor. They can do this in person or by email. For more on how this
particular open-source free program is used by teachers and students, see Part
One of this report in this journal; Segalla and Hauk (2010).

Research results

In this second installment of our reporting about WeBWorK, we share results
from a study of college algebra classes where WeBWorK was used as a substi-
tute for paper and pencil homework. Students in 12 of 19 classes had home-
work problems to be completed through the web-based software WeBWorK,
while students in the other 7 of the 19 classes were assigned the same prob-

" WeBWorkK has the ability to accept (and evaluate) mathematical notation. For example, it will
accept a function as an input if that is what the answer requires.

* The instructor can program general hints in each problem set; anticipatory hints that may guide
the student to the correct solution. Example: “The quadratic equation you are solving is not factora-
ble over the rational numbers.”
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lems - all were from the course textbook - to be completed using the tradi-
tional pencil-and-paper approach. First, the bottom line:

Student achievement in the web-based homework group was
at least as high as the achievement in the paper-and-pencil group.

That is, even a narrow use of WeBWorK as a substitute for handwritten
homework can be at least as effective as traditionally graded paper and pencil
homework for students learning the mathematics common to the high school
second year of algebra.

Perhaps as important is the fact that WeBWorK challenged students and some
teachers to break some research-based proven perceptions of how students
and some teachers feel about mathematics, or better, what they believe that
mathematics is about. All indications are that WeBWorK may productively
challenge, and hopefully change, some of the detrimental beliefs about mathe-
matics learning and teaching.

Our focus for this report was the first-year college algebra classes at a Califor-
nia state college we will call Big Public University (BPU; see Figure 1 for an
overview of the student demographics compared to national averages).

Our questions

1. Student Achievement

Given that the same homework items were assigned in web-based homework
(WBH) and paper-and pencil homework (PPH) sections, and controlling for
preparedness by way of pre-test and national norm-referenced tests (SAT-
Math and SAT-Verbal), how did student achievement in the two situations
compare?

2. Student Perception

Among the students who did web-based homework, what are perceptions of
the nature, purpose, and use of web-based homework, particularly of their ef-
forts and degree of success using WeBWorK?

3. Instructional Style
What contributions to differences in students’ perceptions and performance
might be attributable to instructor style?
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In this study:

o

644 students were enrolled in the 19 class sections.

Of these, 532 (84%) completed the course while 112 (16%)
dropped or withdrew.

Of the 532 who finished the course, 435 (82%) passed it

with a D or better:
A (19%), B (28%), C (24%), or D (11%).
That is, of the 644 who originally enrolled, 435 passed,
97 failed, and 112 withdrew from the course.

There were no statistically significant differences in these
percentages between the WBH and PPH sections.

There were 408 students in the 12 WBH sections and
236 students in the 7 PPH sections.

Fifteen instructors taught the 19 classes. Each of the
three instructors who taught multiple sections of the
course had at least one PPH and one WBH section.

Figure 1 below compares the diversity of students in this study (Big Public
University) with that of the national average.
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Figure 1. Student demographics at BPU compared to U.S. national aver-
ages.
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Methods: Data Gathering and Analysis

Achievement

We collected algebra pre- and post-test scores, student preparedness infor-
mation (SAT-Math and SAT-Verbal scores), demographic information, and
course completion information.

All students in the 19 classes took a 25-item multiple-choice paper-and-pencil
test over college algebra content in the first and last weeks of the term. The
same test was used both times. Developed and reviewed by the instructor who
coordinated the course and five expert college mathematics instructors, the
exam was pilot tested in the year before being used for this study.

Assignments

The college algebra problem library programmed into WeBWorK for the study
was made up of exercises selected from the textbook used by all the classes
(Stewart, Redlin, & Watson, 2000; permission was obtained from the author
and publisher).

The college algebra course coordinator determined a list of suggested home-
work exercises, organized by textbook section, and provided it to all instruc-
tors and to the WeBWorK problem library programming team. Each WBH and
PPH instructor used at least 80% of these problems in weekly assignments.

Students completed the majority of homework outside of class time. Students
in WBH courses did their WeBWorK on a home computer or at a computer in
an on-campus lab.

Perception

At the end of the semester, WBH students completed a short survey designed
to measure their comfort with computers and their perceptions of learning
mathematics using the WeBWorK system. The survey included six statements,
each with a five-point response scale, the seventh item was a prompt for writ-
ten comments about WeBWorK. A similar survey of instructors was adminis-
tered.
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Results

Achievement

First, we give some context:

o Inthe PPH classes, instructors reported that about 65%
of students turned in homework regularly.

o The WeBWorK server records indicated that 78% of
WBH students regularly attempted their web-based homework.

The main statistical result was that no significant differences in perfor-
mance were found between WBH and PPH students on the post-test nor
were there any statistically significant differences in score gain between

the groups from pre- to post-test (see Figure 2).

It seems WBH supports student achievement at least as well as PPH while

saving instructors homework grading time.

We note here that, though disheartening, trends similar to those found in
student achievement in high school algebra were present at BPU (e.g., with

some students’ score gain being negative or zero).
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Figure 2. Student score gains from pre- to post-test (25 points possible).
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Student Perceptions

Student answers to the items on the end-of-term survey indicated that WeB-
WorK was seen as accessible and that they studied “about the same” amount
with WBH as they had in previous PPH courses. Most students reported that
they were already comfortable using computers when starting college algebra.

On the open-ended survey question, 149 students (of the 348 who completed
the survey) offered written comments. We grouped them into three catego-
ries:

o perceptions
o Intentions
o belief-conflicts.

The ethnic, gender, and course instructor distributions for the 149 responders
were approximately those of the entire WBH population, though the distribu-
tion of grades was not the same as the whole population (students who ended
the course with a grade of F were underrepresented in the 149 who made
comments). Among the 149 responders, 40% perceived WeBWorK as “difficult
to communicate with,” noting: “Sometimes my correct answers would come up
‘incorrect’ because I did not type my answers the way the computer could un-
derstand.” A small group of students (10%) also mentioned an urge to “put off
homework because it’s so frustrating” to use WeBWorK.

Student Intentions

As a support for engaging in mathematical thinking, WeBWorK is involved only
as a monitor for correctness. Good monitoring is key in learning to be an effec-
tive problem solver. In the language of Schoenfeld (1992), the web tool does
some monitoring but responsibility for meta-cognitive control (response to the
monitoring), problem-solving, and the impact of mathematical beliefs rests on
the student.

For the 35% of students responding whose comments indicated a view of
mathematics learning as a complex and personal process of building conceptu-
al understanding, WeBWorK was a tool that helped or hindered concept learn-
ing. The other 65% of students, whose reports indicated a procedural view of
mathematics learning as a disconnected collection of formulae and “plug-and-
chug” strategies, appeared to view WeBWorK as either helping or hindering a
procedural approach.
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Student Beliefs and Belief Conflicts

Student beliefs about mathematics appeared to be challenged frequently by their
WeBWorK experiences. Spangler (1992) summarized four main beliefs about
mathematics widely held by high school and college students:

1) Mathematics is computation; it does not involve reflection during
task engagement;

2) Mathematics must be done quickly, or, spending little time is a more
important task goal than sense-making;

3) Mathematics problems have one right answer and no further action
or evaluation is required once an answer is found; and

4) The teacher is the agent of mathematical learning, not the student
(i.e., only intentional acts on the part of the teacher lead to learning,
no intention on the part of the student is necessary).

Many of the concerns voiced in student comments about WeBWorK can be traced
back to a violation of, or challenge to, one of these four beliefs.

o As an illustration, in WeBWorK some computations can be done by
the program. For example, given the problem: Solve forx: 3x+1 =7,
a student who submitted, through the WeBWorK interface, (7-1)/3
would get back the response: “That answer is CORRECT.” Some stu-
dents reported feeling that they “weren’t really doing math” because
the program, not the student, would do such computation, a chal-
lenge to Belief #1.

o  Challenges to Belief #2 were evidenced in student comments about
the role of time in using WeBWorK. Students could (and often did)
retry problems. About 10% of students perceived a “re-try-ability”
of problems that they said led them to further effort. Another 10%
commented with a tone more of complaint than self-reflection that
they spent more time on their efforts in WBH than in previous PPH
coursework and that “math homework shouldn’t take so long.”

o Belief #3, that mathematics problems have only one correct an-
swer, appeared to conflict with the use of WeBWorK in two ways:

First, WeBWorK would do computation for students so that (7-
1)/3, 6/3, and 2 were all correct answers to the problem “Solve
for x: 3x + 1 = 7.” The possibility of multiple correct versions of
an answer was a concern in about 10% of the student comments.
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Secondly, and perhaps more significantly, were the reports by
about 10% of student respondents that the goal was seeing “That
answer is CORRECT.” This group appeared to have both the view
that mathematics was a collection of algorithms and the intention
to aim for “that feeling of satisfaction” resulting from “That an-
swer is CORRECT.” Within this group there were four students
who remarked on guessing many times when the first answer was
not correct. We reviewed the WeBWorK audit trail and found that
a very few students submitted as many as 35 guesses before mov-
ing on to the next problem. This small subset of students may not
see their role as learners to include monitoring and control, so the
monitoring offered by WeBWorK was of little use.

o Belief #4, came into play for the small group of students who want-
ed WeBWorK to “be the teacher.” About 15% of students said they
disliked the fact that all they saw was “That answer is INCORRECT,”
and wanted “hints about what is wrong.” WeBWorK may have been
seen as a surrogate teacher failing to be active because the interface
did not suggest solution paths or give hints for how to proceed.

Instructor Perceptions

The fifteen instructors came had a variety of mathematics and teaching back-
grounds. See Table 1 for information on the instructors and their full-time
equivalent (FTE) teaching experience (all names are pseudonyms).

WBH instructors also held differing view about the usefulness of WeBWorK.

As has been noted in the literature, what and how teachers communicate with
students about innovation can impact its effects. Indeed, what instructors said
about it was reflected in their student’s survey comments and pre- to post-test
gains. Table 1 on the next page summarizes the data for the instructors.

o Ms. Cone, Mr. Ellipse, and Mr. Graphic, each said in one way or
another that they saw web-based homework as “not much use.”
This was reflected in their students’ comments, including those
who said it was “a colossal waste of time.”

o On the other hand, Mr. Basis, Ms. Degree, Dr. Functional, and Ms.
Join all said they thought WeBWorK was a good idea and “could
be useful,” but weren’t sure it could replace regular homework.
Each felt personal type of interaction was missing: they saw no
way for themselves as teachers to guide students when the stu-
dents made mistakes (connected, perhaps, to their awareness of
students’ tendency towards Spangler’s Belief #4).
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Students of these four instructors reflected their teachers’ hesi-
tant views of the usefulness of WeBWorK and included com-
ments like “I prefer getting feedback from the professor because
he could help me understand what I did wrong much better.”

o Mr. Angle, Mr. Helix, Mr. Inch, and Ms. Kite all asserted that
WeBWorK was a valuable tool and this was reflected in student
comments about how “helpful” it was. Moreover their students,
like those of the instructors in the “could be useful” group, also
made suggestions for how the interface might be improved.

Table 1. Summary Profile of WBH and PPH Class Instructors.

Degree at Years of Years teach-
WBH only time of teaching ing College
study Algebra
Ms. Degree M.S. >10 >5
Mr. Ellipse M.S. >10 >5
Dr. Functional Ph.D. >10 3-5
Mr. Graphic M.S. >5 3-5
Mr. Helix M.S. 3-5 3-5
Mr. Inch GTA 3-5 3-5
Ms. Join GTA <1 <1
Ms. Kite GTA <1 <1
PPH only
Dr. Radian PhD >10 >5
Mr. Saddle M.S. >10 >5
Ms. Torus M.S. >10 >5
Mr. Undo M.S. 1-3 1-3
WBH & PPH
Mr. Angle (1W, 1P) M.S. 3-5 3-5
Mr. Basis (2W, 1P) M.S. 3-5 1-3
Ms. Cone (1W, 1P) GTA <1 <1
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Figure 3 below shows the average gain score for each instructor’s students, with
instructors grouped according to the opinion they expressed about the usefulness
of WeBWorK. Note that though the initial assignment to WBH or PPH for each sec-
tion was random; instructors had the choice to withdraw from either group. Two
instructors switched from PPH to WBH; no WBH course instructor requested to be
in the PPH group.
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Figure 3. Instructors’ views of the usefulness of WeBWorK and
their students’ pre- to post-test gains (out of 25 points possible).

Though the number of WBH instructors was too small to look for statistically sig-
nificant differences among the performances of their classes based on a grouping
by the instructor’s perceptions about the usefulness of WeBWorK, the pattern ap-
parent in Figure 3 is provocative. Certainly, when a teacher did not view it as valu-
able, student learning was prone to suffer by comparison (e.g., the bottom three
bars for the “not useful” group in Figure 3).

Notably, the instructors who expressed interested hesitancy about the use of
WeBWorK had higher average gains in their classes than those instructors who
asserted they found WeBWorK quite useful.
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The “could be useful” group of instructors reported carefully reflecting on what
might be missed through the use of WeBWorK - qualitative feedback to their stu-
dents - and said they implemented alternative methods for interacting with stu-
dents. In fact, Ms. Degree (the instructor with the most experience, 21 years) as-
signed both WeBWorK and a few additional paper and pencil homework problems
in her section. She carefully commented on these extra, mildly non-routine prob-
lems, before returning papers to students. Her WBH class also had the highest av-
erage gain from pre- to post-test.

Benefits and Limits of WeBWorK

Unlike internet auto-tutorials or discovery learning the web-based homework of
WeBWorK investigated here does not openly conflict with traditional direct in-
struction or lecture methods of classroom teaching nor does it take a large amount
of instructor time. This may be both good and bad.

o It is good in that the likelihood of WBH adoption by experi-
enced teachers is increased because WeBWorK can be seen as
a tool to reduce the need to grade piles of mathematics
homework papers.

o It may be bad, however, in that WeBWorK does nothing ex-
plicitly to challenge the notion widely held by many students
(and some teachers) that learning, particularly in algebra, is a
matter of skill practice rather than construction of personal
knowledge structures rich in conceptual connections to previ-
ous learning.

While it would be wonderful if WBH actually improved student performance, we
think that an interface as straightforward as WeBWorK is unlikely to lead to such a
result without additional teaching efforts (such as used by Ms. Degree). Nonethe-
less, WeBWorK can be used by teachers to make their teaching load more man-
ageable while being at least as effective as PPH homework for most students.

A benefit of delegating the masses of skill practice for which PPH is viewed useful
to a web-based interface is that it frees up instructor time and allows instructor
choice in the nature of written interaction with students. That is, WeBWorK cre-
ates flexibility to spend what would have been homework grading time on alterna-
tive forms of feedback that may be more beneficial to both instructor and students
(Cooper, Lindsay, Nye, & Greathouse, 1998).
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Note:

This material is based upon work reported earlier (Hauk & Segalla, 2005). The work was
supported by the National Science Foundation under Grant Nos. DUE0088835, and
DGE0203225 and the U.S. Department of Education, Fund for the Improvement of Post-
Secondary Education Grant No. P116B060180. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation or the U.S. Department of Edu-
cation.
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MathFest 2009
August 6-8
Portland, Oregon

J Mathematical Association of America

My First MathFest: What an Exciting and Rejuvenating
Experience. And a Surprise!3

Jonathan Brown
Graduate from California State University Stanislaus
Currently in the Ph.D. program at University of Hawaii at Manoa

MathFest 2009 in Portland Oregon was a three-day event from August 6th to Au-
gust 9th. I had never paid attention to the MathFest Conference until I participated
in two math competitions - the National Collegiate Problem Solving Competition
sponsored by American Mathematical Society (AMS) and, Math Jeopardy, spon-
sored by Mathematical Association of America (MAA).

How did I become aware of these competitions? We have a math conference room
and study lounge in the Math Department where posters, flyers, and information
on such opportunities for math majors are routinely posted. A new problem is
posted each month and [ began submitting my solutions to these problems on a
regular basis.

[ found the problems challenging, but approachable and fun. In Spring of 2009 the
math Department Chair, Dr. Abram, informed me that I had been named the
“champion from our campus” as [ had the highest number of correct solutions at
CSU Stanislaus. I was elated, but the good news did not end there. Dr. Abram also
told me that [ was invited to attend the National Collegiate Problem Solving Com-
petition at MathFest as our campus representative. This was all very exciting to
me.

I researched MathFest and what I needed to do to travel to Oregon to prepare for
the Competition in August 2009. For a student, especially for an undergraduate
math major like me, obtaining adequate funds for this trip was a problem. I tried
contacting MathFest about the issue, but did not get any real response. Fortunate-
ly, ‘lady luck’ was shining on my efforts. While wandering the halls of the math de-
partment over summer I ran into Dr. Sundar, Professor of Mathematics, who is de-
lightfully enthused about mathematics and future mathematicians.

3 Logo source: http://convention2.allacademic.com/one/maa/maa09/
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She told me that MathFest would be such a great opportunity for my future en-
deavors and I should just plan my trip. Dr. Sundar assured me that if [ didn’t hear
from MathFest or the AMS/MAA she would help me get there.

[ immediately went home and collected math books that related to the problems I
had encountered in the competition problems on the AMS/MAA board during the
school year and started reading the brochures for MathFest. Looking at the con-
ference schedule I realized how big MathFest really was. | was amazed at the
number of math sessions that were scheduled everyday and all day! It seemed
each session was by some of the biggest names in mathematics and on fascinating
topics. While planning for the conference, I realized that there would be a Math
Jeopardy event. | wanted to compete in this event.

Driving was the best and cheapest option for me. My wife and I packed our bags
into the car and got off at about midnight. My wife drove, which helped me to get
there on time as well as to get some sleep. The trip took about 12 hours. We
washed up at a KOA (Kampgrounds of America) site outside of Portland, pulling
into Portland the morning of August 5th.

[ was greatly disappointed, however, when I learned that Jeopardy required teams
of four. This meant that I could only register to watch the contest, but not to com-
pete. In hindsight the confusion about registration was a great blessing. If I had
known [ wouldn’t be able to compete in Jeopardy I would have planned to arrive
the 8th and leave the 9th, and missed all of MathFest.

Now about the MathFest! Each day started early with the MAA Invited Addresses.
Alan Taylor, of Union College, gave a talk titled Arbitrary Values of Arbitrary Func-
tions. It was a fascinating talk, which left me daydreaming for months about cut-
ting cakes democratically and guessing hat colors. Democratic cake cutting is a
variant of the “fair division problem”, which is to create an algorithm for n agents
to divide a resource with some amount of fairness without an arbiter, and “guess-
ing hat colors” refers to the task of successfully guessing hat colors based on the
colors of the hats in front of you in a line.

Ravi Vakil, introduced as the “Rock Star” of mathematics, was amazing at clearly
describing complex structure in mathematics. Through the analogy of a common
doodle Vakil illustrated the limit of a sequence of functions under composition and
the speed of convergence. The results were interesting for anyone who has stud-
ied the theory of functions of real variables and yet still a pleasure to follow for
someone who has not. It would be just as futile to try to enumerate his accom-
plishments, as it would be to remove the seeds he planted in my head that have
continued to keep me wondering about, as he put it, “the way the universe wants
us to see things”. Each of his three talks in the series entitled “Modern Structure in
Classical Geometry” was well worth the trip.
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Beside the MAA Invited Addresses there were 'paper sessions,’ many five hours
long. A paper session is a collection of people giving talks about papers they wrote
on a common topic. Of the paper sessions the three I found most pleasing were
“Open and Accessible Problems in Knot Theory”, “Graphs, Networks, and Inverse
Problems”, and “History of Mathematics”.

It wasn'’t only the invited addresses and paper sessions that made MathFest awe-
some- it was the people. I was very happy to see Mrs. Doan, a professor from Vic-
tor Valley Junior College, who was presenting a fascinating paper that revealed the
lost history of the longitude problem. She treated my wife and I to lunch, which
gave us an opportunity to catch up and discuss common interests.

One night there was an ice cream social designed to bring people out and honor
some undergraduates who had won awards for their research. 1 decided to bring a
board game, Settlers of Catan, with me to the ice cream social and I got to play and
network with some newly graduated Ph.D.’s. Just listening to them talk about
their research and experiences made me feel confident about my own preparation
for the road ahead of me- which is to enroll in a Ph.D. program.

Although I did not win the Problem Solving Competition, some of the judges and
people in the audience informed me that my performance was impressive. [ was a
little disappointed I didn’t get a plaque to bring back to CSU Stanislaus.

[ want to say that I could not have done this without the support of the CSUS Math
Department, which routinely posted the math problems for the interested stu-
dents, Professor Sundar’s vision for future mathematicians who generously fund-
ed the trip, and my non-mathematician wife. There is no way I can adequately
thank her for all she did to help MathFest be a great experience for me and who
also sat through three days filled with my non-stop talks about mathematics. We
were both revitalized by the trip to MathFest in beautiful Oregon.

[ strongly recommend to fellow students that if you like doing math problems or

have a desire to pursue a graduate degree in math, do attend MathFest. (See:
www.maa.org/mathfest/)

37 Journal of the Central California Mathematics Project




English Learners in the mathematics classroom, a view
from critical hermeneutics.

Iris Haapanen
Department of Teacher Education
California State University, Stanislaus

Every view of the world that becomes extinct, every
culture that disappears, diminishes a possibility of life.
Octavio Paz

Introduction

In the K-12 classrooms of a society that readily accepts and rather enjoys the cul-
tural customs and cuisines of its diverse citizens but is slow or unwilling to accept
mutatis mutandis the uniqueness of their children’s cultural learning styles dimin-
ishes the potential of those children.

The aim of this paper is to use the findings of the field of critical hermeneutics,
which we shall define presently, to encourage teachers, in particular mathematics
teachers to add to their existing “differentiated instruction” as defined in the Cali-
fornia Mathematics Framework.

The essence of the field hermeneutics is the study of how cultural variables play
an important part in the teaching-learning process. The reader is encouraged to
read above and beyond this article to know how critical hermeneutics can help EL
learners improve their learning.

Hermeneutics experts believe that educators have not taken the cultural aspect of
the teaching-learning process to a sufficiently meaningful level in order to ensure
that all students have the opportunity to show their academic potential. The un-
derpinnings of this theory are the linguistic characteristics of a culture: Awareness
of the linguistics differences one can better understand the cultural aspect.

As teachers, we have applied various pedagogies from the age-old lecture method
to constructivism. Perhaps it is time to add to the aggregate of pedagogical prac-
tices the heretofore neglected cultural learning styles of students, to achieve what
hermeneutics experts call “social justice” in the classroom.

The mathematics classroom is a natural place to apply the ideas of hermeneutics

as mathematics is a discipline that transcends cultures. But more: we have not
done very well with usual methods of instruction in teaching young children.
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When we compare United States children’s mathematics achievement with that of
other countries in the TIMSS* and PISA’ studies, our children rank low. Of course
the evaluation has to be tempered because of our culturally heterogeneous stu-
dent population as compared with that of other countries. But why not turn this
difference into a strength by using the talent—for mathematics and other sub-
jects—that is waiting to be discovered behind the “cultural curtain.” We need to
boost our determination to have every child meet her mathematics potential. After
all, the Declaration of Independence of this great country states:

We hold these truths to be self-evident, that all men are created equal,

that they are endowed by their Creator with certain unalienable Rights,
that among these are Life, Liberty and the pursuit of Happiness.®

Some facts

o There are about five million “English Learners” in this nation’s K-12
classrooms, representing almost 100 different languages.

o A majority of elementary school English Learners (EL) are native to the
United States.

o California educates about one-third of the nation’s estimated EL stu-
dents: 1.6 million students.

o Eighty-five percent of all EL students in California are Spanish speaking.

These facts and figures are from 2007, and have been subjected to slight adjust-
ments to the references below:

o Until 2009-10 when Hispanics/Latinos edged over 50% in California,
the state had no majority ethnic group.

o The state has larger percentages of Hispanics/Latinos, Asians, and
American Indians than other four large populous states like New York,
Texas, and Florida.

o In 2007-08, Hispanics made up more than 48% of California's student
population as compared with 21% nationally. (NCES)

* Trends in International Mathematics and Science Study (TIMSS) compares mathematics and
science achievement of 4t and 8th grade students in the US with that of other countries.

: Programme for International Student Assessment (PISA) measures mathematics skills nec-
essary for productive citizenship; it is administered internationally to15-year-olds.

6 The word “unalienable” appears in the Declaration of Independence, but often it is replaced
in conversation and writing by its synonym “inalienable.”

39 Journal of the Central California Mathematics Project




Hermeneutics defined and its relevance to education

The Stanford University Encyclopedia of Philosophy defines the term hermeneu-
tics as “the theory of understanding and interpretation of linguistic and non-
linguistic expressions. As a theory of interpretation, the hermeneutic tradition
stretches all the way back to ancient Greek philosophy and includes the study of the
classical ancient cultures.”

In the classroom we know all to well that a child must understand the language in
order to learn, but the interpretation part of the definition is as important. English
is a rich and expressive language with as many innuendos and connotations as one
would want, which is good for Shakespeare, but not good for the typical EL stu-
dent. As teachers we must be aware of the richness of the English language, and
make every effort to have our students interpret the language in a word problem
correctly—a crucial part of problem solving.

Although this is not the place to pursue the history of hermeneutics all the way
back to the Greeks, as suggested by the definition above, one example stands out:
Plato’s Meno includes a discussion of how Socrates evokes from a young man the
knowledge to double the area of a square. The entire discussion in the Meno re-
volves around the importance of interpretation as suggested by the definition of
hermeneutics above.

Hermeneutics’ theme has been present since Aristotle. This does not mean that
we should still follow the teachings of Aristotle—at least not literally—but certain-
ly in spirit. For the purpose of this article let us simply take one key word: culture.
We must recognize that in the K-12 classroom, all our students wear some cloak of
enculturation; and, as defined above, the culture’s linguistic characteristics. Be
they “American” or foreign born, the teacher can improve the learning, again, in
this case let us say, mathematics, by paying more attention to vocabulary and
study habits of students.

In a study done at the UC Berkeley by Uri Treisman (Studying students studying
calculus: A look at the lives of minority mathematicians. 1992. College Mathematics
Journal, 23, 362-372) researchers concluded that “many minority students, espe-
cially Black and Latino students, did not use the services that were designed to
help them. One of the reasons for this was identified as being cultural.” If culture
plays a role in the teaching-learning process at Berkeley, it certainly can happen in
our own classrooms.
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Vocabulary

The vocabulary in mathematics is rather unique and since (too) many people are
apprehensive about the subject its symbolic language and unique vocabulary add
to its undeserved reputation for impenetrability.

Here are just some of the many words and phrases that add to the mystery of the
subject and play havoc with EL students:

quotient, difference, product, divide (into two parts, not perform
the division; or divide by as oppose to into), GCF, LCM, factor,
separate, combine, at least, at most, no more than, not less than.

Critical hermeneutics theory would suggest giving EL students an appropriate
“dictionary” list of mathematical terms and possibly interpretations along with
“translated” words and phrases. This author believes that it will not be long until
EL students “lean over” to using the regular, accepted vocabulary. Along with this
type of activity, critical hermeneutics would suggest using diagrams, graphs, fig-
ures, stick people drawings, and other visuals to help EL students interpret the
connotations in the English language. This is especially true for the dreaded word
problems, an area of mathematics where most students have difficulty.

Pre-understanding

“Understanding is not possible without pre-understanding” is a major theme in
critical hermeneutics: students in mathematics classes, EL students especially,
need to have a springboard of “pre-understanding” before they delve into trying
to understand the quintessence of a mathematical concept. Here is an example.

Ellen bikes to school every day from her house. Today when Ellen
was three quarters of the way to school she met Esther who was
walking to school. They decide to walk the rest of the one half mile
to school together. How far is the school from Ellen’s house?

“Bikes” could be misinterpreted as a noun, not a verb, as it is used in this problem.
Perhaps “three quarters” needs to be restated in fraction notation for better EL
understanding. “The rest of the one half mile . .. ” is also a key phrase, for what is
the meaning of “the rest” to an EL students? As a matter of fact there are no nu-
merals or symbolic fractions in the statement of the problem at all. The EL stu-
dents must interpret all these facts using language skills and interpret them cor-
rectly.
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Critical hermeneutics replaces “how to read” a problem like the one above with
“how do we communicate the ideas in the problem?”

Solutions of mathematical problems cannot exist without communication with
other people or even with oneself. Yet, teaching to encourage “equal voices in the
classroom” can be an alluring experience for children. Such equal voices can trans-
form present teaching practices to the point that would bring us to a true state of
equity.

This author’s experience with critical hermeneutics—teaching for social justice as
we stated above—in the classroom has had positive results. It is her belief that
specific hermeneutics research in mathematics education will more than likely re-
veal how to improve mathematics education especially for EL students.

We encourage teachers to follow a methodology that has been shown to improve
the teaching-learning process. We especially need this in the mathematics educa-
tion classroom. How? The hermeneutics teacher encourages and inspires students
to speak “the dialogue in which we are” and to “bring cultures together,” in the
classroom.
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e Math for Teachers: An Exploratory Approach

Robert G. Stein with Laura Wallace (Authors)
Publisher: Kendall Hunt (2010)
Reviewed by Mark Bollman, on 03/04/2011

| Reprinted from MAA Review

At my current institution, “Mathematics for Elementary Teachers” is a one-
semester course that meets for 6 hours per week, ostensibly divided into three
hours of lecture and three of laboratory weekly. [ have been teaching that course
for many years — indeed, no one else currently in my department has taught it —
and in that time, I have looked at many textbooks for that audience and that
course. As is the case with many standard service courses, there seems to be con-
siderable agreement on most of the topics to be covered, so I have developed my
own core list of criteria for evaluating these books.

First, [ hope that “A Math-For-Elementary-Teachers” textbook will be a resource
for future teachers — something they can keep with them as they move out of my
class and into their first teaching position.

On that score, Stein and Wallace have written a fine text. The emphasis is on the
mathematics, and while the students’ goal to teach is not far from the surface, the
content manages to dominate. Indeed, there is no laundry list of NCTM Standards
to detract from the primacy of the mathematics. (I accept that others may regard
this as a flaw.)

[ also hope that students will find the mathematics they will use as professionals in
their textbook, and so I look carefully for a full section explaining the normal dis-
tribution and the mathematics behind percentiles, which teachers will need when
trying to interpret their students’ standardized test results.

Unfortunately, no such section is present here, though there is a very brief men-
tion of percentiles. While that is a flaw in my opinion, it’s one that can be easily
filled in by those who feel it's important.

That, however, is the only concern I have about this book. The standard topics are
all here and covered in an unusual level of detail — which is to be expected when
the book includes more than a year’s worth of material. A student armed with this
book and with the experience of learning from it will be well-prepared, mathemat-
ically, for a career as an elementary school teacher.

43 Journal of the Central California Mathematics Project




Mark Bollman (mbollman@albion.edu) is associate professor of mathematics at Al-
bion College in Michigan. His mathematical interests include number theory, proba-
bility, and geometry. His claim to be the only Project NEXT fellow (Forest dot, 2002)
who has taught both English composition and organic chemistry to college students
has not, to his knowledge, been successfully contradicted. If it ever is, he is sure that
his experience teaching introductory geology will break the deadlock.

This review is reprinted from MAA Reviews http://www.maa.org/maareviews
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Teaching Problem Solving at the Elementary Level Using A Deck Of
Playing Cards

Viji K. Sundar
Department of Mathematics
California State University Stanislaus
vsundar@csustan.edu

Elementary school classrooms seldom use playing cards in the teaching of mathemat-
ics, probably because of the gambling stigma that has long, and justifiably, been associ-
ated with playing cards and gambling. But times change, and petty correlations to iniq-
uitous activities relegated to such objects as playing cards, dice, and gambling in gen-
eral, has weakened to the point that we may use some of these games as instructional
aids and manipulatives. In short, using playing cards as a manipulative in the class-
room is, in our view, more than acceptable nowadays. It is desired.

That being said, playing cards can be used as manipulatives for illustrating mathemati-
cal concepts from numeration to probability and more. Elementary school children can
grasp simple numeration problems using ‘playing cards,” ‘rolling dice (or one die)’ or
the lotto type ‘drawing a black ball from a jar that has black, white and red balls.’

This article attempts to show how a regular deck of playing cards, with an additional
“zero card” or “joker” for each of the four suits may be used as a ‘manipulative’ to il-
lustrate some concepts involving practice with whole number operations, number sen-
tences, elementary geometry (similarity and congruence) and elementary algebra (eval-
uating variables).

For the reasons outlined above our experience show that children tend to welcome a
game using a ‘regular deck of cards’ more than ‘typical flash cards.” Why? One, play-
ing cards is a fresh manipulative, and two, because it does still have the sense that
cards are used as an adult past time. Undeniably our school children are well aware of
the ultra adult televised versions of poker and blackjack contests, though we would
wish that they would be as savvy of the more tactical game of bridge.

Below is a brief description of some mathematical concepts that can be taught and rein-
forced using a deck of playing cards as a manipulative. All the games can be played in
small groups of students or with the entire class. The teacher needs to keep in mind that
the numbers is not as important as its conceptual representation. Once the form of the
game is well established, several variations can be introduced.

The games are arranged on the following pages so that they may be easily duplicated.
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Sorting Game

o Materials needed:
* Any one of the four suits of 13 cards and
» “azero card” (or Joker) for each participating student.

o Objective: to have students be able to
* recognize symbols and numerals;
= associate numbers with variables;
» arrange the cards in ascending or descending order.

o Directions:

=  Sort out the cards into the 4 suits of 13 cards each and one Jok-
er; give each student one suit and have the students shuffle
their cards. Instruct the students to hold out the card that you
call for.

= (Call out for ‘2’ or hold out ‘2’ written on a plain piece of paper
or write 2’ on the board.

= Askall students to show their 2’ card.

= Repeat this for other numerals; Jack, Queen, King, and Joker (0).

= Next, ask all students holding Jack of hearts to stand up (or
scratch their ears).

= Repeat this with other cards. This game may be played in

groups of 2-6 where you select a student to act as teacher.
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Missing Card Game

o Materials Needed:
= Regular deck of playing cards.

o Objective- to have students be able to
* recognize the cards;
* sharpen memory
* jdentify the symbols on the card
= use the correct language.

o Directions:

= Start with any six cards.

= Place them face up on a mat.

= Have the student(s) study the cards.

= Tell the student(s) to look at the ceiling.

= Remove one card.

= Ask one of the children to name the missing card.

= Repeat.

= Again, ask the same or another student(s) to look away and re-
move another card.

= Ask the student(s) to name both of the missing cards.

= Remove a different card with or without replacing the first two.

=  Continue until the student(s) has mastered that particular set of
cards.

» Slowly increase both the number of cards in the play as well as

the number of cards removed at each step.
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Memory Game

o Materials Needed
= 2 -4 decks of playing cards depending on the number of
players.
= Atleast 4 cards per player.

o Objective: to have students be able to
= match shapes, size and color
= develop the concept of one-to-one correspondence
= compare size of numbers
* count and skip-count by two

o Directions;

* First decide whether you want to match shapes (for ex-
ample, any two hearts or any two diamonds) or numerals
(the 2 of diamonds matches the 2 of hearts), etc.

* For younger groups begin the game with only two suits of
the same color.

= Shuffle cards and place all cards face down.

= Each player is allowed to turn two cards face up. If the
cards match, the player keeps them and gets an extra turn.
If the cards don’t match, the player to the left takes the
turn.

» Play continues until all sets are formed.

= Each child counts the total number of sets and the total
number of cards. The teacher records them. They compare
scores; observe the doubling pattern between number of
sets and number of cards.
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Staircase Game Up

o Material Needed
= Deck of cards, one suit of 13 cards and a zero (Joker) card for each student

o Objective: to have students be able to
= recognize symbols and numerals
= arrange the cards in ascending order.

o Directions:

=  Give each student one suit of suit of cards — Ace through King and the Joker
or a zero card.
= |nstruct the students that Joker =0, A=1, J=11, Q=12, and K=13.
= Have each student shuffle the cards, lay them face up on the mat and rear-
range them in the ascending order.
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Staircase Game Down

o Material Needed
= Deck of cards, one suit of 13 cards and a zero card for each student
o Objective: to have students be able to
L] recognize symbols and numerals
=  arrange the cards in descending order
o Directions
=  Give each student one suit of suit of cards — Ace through King and the Joker
or a zero card.
= |nstruct the students that Joker =0, A=1, J=11, Q=12, and K=13.
= Again have the student shuffle the cards, lay them face up on the mat and
then rearrange the cards in the descending order starting with King.
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A look at pedagogical implications

Below, I shall indicate some of the problems I asked an eight-year-old and the answers
she presented. Her solutions to the last two problems were particularly interesting and
unexpected. She did not illustrate division (=) the way I expected her to do. However,
she did present the correct answer with a verbal explanation. As is evident from the
exercises here, these can be adapted to illustrate many different concepts involving
practice with whole number operations and number sentences.

In most of the problems below we “go with” this interesting pedagogical insight, that is,
the child’s way of looking at numbers. Historically, this will remind us of the additive
system the ancient Egyptians used; but not quite the same since these cards have a nu-
merical value, while they are “pictorial. In ancient Egyptian numeration for example
the symbol for the number ten was a heel mark M and for one hundred a scroll, for one
thousand a lotus flower, and so on. Here, the “pictures” on the numbered cards serve a
dual purpose; the number eleven is symbolized by a Jack; twelve by a Queen; and thir-
teen by a King,

With this caveat, let us proceed to the questions in the pages below.
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Word problems and the way they were answered:

1. There are 30 students in your class of which 17 are girls. How many boys are there in
your class? Show me the answer.

ik & 2% &

P

T
%y U H

2. There are 30 students in your class. If four students are absent how many are pre-
sent? Show me the answer.

3. You bought a bubble gum for 10 cents, an eraser for 15 cents, and a balloon for 20
cents. How much will you have to pay in total? Show me the answer in two ways.

¢ ¢
3 + + e
¢ ¢
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oo | X ¢
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4. Suppose we are at the store to buy school clothes. I have § 40. I buy you a pair of
shoes for $17 and a shirt for $8. How much do I pay? And how much money is left
over Show me the answers.

0
vV e & 3 o 2 o
ve + o®a i1 . + ?
Lo (0 ¢
padihad | ve L I ¢}
Left over:
T
¢ 2
or
EQ.Q 2 L % @
e2| T+ o | +
\ M * B
adlhd A ¢
or
7 7
QQ & Q’ © A
& [ .
aa| + || + ¢
v v ) $

53 Journal of the Central California Mathematics Project




5. You have $1. Each pencil costs 9 cents. How much will 4 pencils cost you?

Can you do this with fewer cards?

-2

A+
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6. Suppose you have 19 apples and you gave 2 apples to each child. To how many children

can you give apples?

100 A

.9 .

e &
¢ o} ¢

Nine children and 1 apple left over

7. You have $30 to buy gifts for your friends. You decide to buy belts. Each belt costs $5.

How many belts can you buy?

7 A
o ¢ _ fe e
e o - o - v ¥
v @y ¢
= v ' 1

What does it mean?

Comment: First I thought I could buy 7. But that didn’t add up to 30.

(She did the problem by repeated subtraction and set up an equation to give the correct an-

swer 6.)
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