

Cal State San Marcos

The Effects of Fire and Post-fire Management on Microbial Abundance and Enzymatic Activity

Karen Konda, Dylan Steinecke, George Vourlitis Ph.D., Arun Sethuraman Ph.D.

Introduction

- The ecological effects of fire and post-fire management are poorly understood.
- Microbial biomass and enzymatic activity were measured to assess the effects of fire and post-fire management on microbial processes.
- We hypothesized that microbial abundance and enzymatic activity would differ across burned sites due to

Methods

- Soil was sampled from unburned (U), naturally recovering burned (N), and hydroseeded burned (H) chaparral sites behind CSUSM.
- NAGase and Phosphatase activities were measured according to Jackson et al. (2013)
- Microbial biomass was assessed using chloroform fumigation and extraction (Brookes et al. 1985).

different post-fire treatments and that enzymatic activity would be positively correlated with each other and microbial abundance.

Data were analyzed using one-way ANOVA and regression analyses

Figure 1. Mean (± SE; n = 8) of NAGase activity (nM/g*h) in each site.

Figure 2. Mean (± SE; n = 8) of phosphatase activity (nM/g*h) in each site.

Figure 3. Mean (± SE; n = 8) microbial carbon (μgC/g dry soil) in each site.

Enzyme	Soil pH	Soil Moisture	NAGase	N (%)	C (%)	C:N	NH_4	NO ₃	TIN	Microbial C
							- -			
Phosphatase	-0.61*	0.52*	0.90*	0.47*	0.51*	0.36	-0.16	0.51*	0.10	-0.07
NAGase	-0.74*	0.35	1.00	0.47*	0.53*	0.43*	0.07	0.57*	0.34	-0.11

Table 1. Correlation coefficients of each variable with phosphatase and NAGase activity with all 3 sites combined (n = 24). The asterisks represent significant correlations (R-critical value = 0.404).

Conclusions

- Both NAGase and Phosphatase activities were higher in the unburned site (Figs 1 and 2). This may imply that
 overall enzymatic activity is still significantly lower in burned sites even 5 years post-fire. Hydroseeding had little
 to no effect.
- Microbial C was significantly higher in the Hydroseeding site. This may be due to the plant species and/or the
 organic matter and fertilizer in the hydroseed mix.
- Enzymatic activity did not correlate with microbial C, implying a difference in microbial composition across sites.
- NAGase and Phosphatase were positively correlated, implying that they are driven by similar factors.
- Enzyme activity was positively correlated with soil C and N, implying N and C co-limitation.

Brookes, P., Kragt, J., Powlson, D., & Jenkinson, D. (1985) *Soil Biology and Biochemistry*, *17*(6), 831-835. Jackson CR, Tyler HL, & Millar JJ. (2013) Journal of Visualized Experiments; 1:80.

This research was sponsored by a USDA-NIFA grant to Drs. George Vourlitis and Arun Sethuraman (2018-67032-27701). We would like to thank Nicolette Gordon and Bryce Summerhays for their assistance throughout the experiment.